scholarly journals Straight-Line Drawings of 2-Outerplanar Graphs on Two Curves

Author(s):  
Emilio Di Giacomo ◽  
Walter Didimo
Author(s):  
Akane SETO ◽  
Aleksandar SHURBEVSKI ◽  
Hiroshi NAGAMOCHI ◽  
Peter EADES

2017 ◽  
Vol 27 (01n02) ◽  
pp. 121-158 ◽  
Author(s):  
Martin Nöllenburg ◽  
Roman Prutkin ◽  
Ignaz Rutter

A greedily routable region (GRR) is a closed subset of [Formula: see text], in which any destination point can be reached from any starting point by always moving in the direction with maximum reduction of the distance to the destination in each point of the path. Recently, Tan and Kermarrec proposed a geographic routing protocol for dense wireless sensor networks based on decomposing the network area into a small number of interior-disjoint GRRs. They showed that minimum decomposition is NP-hard for polygonal regions with holes. We consider minimum GRR decomposition for plane straight-line drawings of graphs. Here, GRRs coincide with self-approaching drawings of trees, a drawing style which has become a popular research topic in graph drawing. We show that minimum decomposition is still NP-hard for graphs with cycles and even for trees, but can be solved optimally for trees in polynomial time, if we allow only certain types of GRR contacts. Additionally, we give a 2-approximation for simple polygons, if a given triangulation has to be respected.


10.37236/831 ◽  
2008 ◽  
Vol 15 (1) ◽  
Author(s):  
Paz Carmi ◽  
Vida Dujmović ◽  
Pat Morin ◽  
David R. Wood

The distance-number of a graph $G$ is the minimum number of distinct edge-lengths over all straight-line drawings of $G$ in the plane. This definition generalises many well-known concepts in combinatorial geometry. We consider the distance-number of trees, graphs with no $K^-_4$-minor, complete bipartite graphs, complete graphs, and cartesian products. Our main results concern the distance-number of graphs with bounded degree. We prove that $n$-vertex graphs with bounded maximum degree and bounded treewidth have distance-number in ${\cal O}(\log n)$. To conclude such a logarithmic upper bound, both the degree and the treewidth need to be bounded. In particular, we construct graphs with treewidth $2$ and polynomial distance-number. Similarly, we prove that there exist graphs with maximum degree $5$ and arbitrarily large distance-number. Moreover, as $\Delta$ increases the existential lower bound on the distance-number of $\Delta$-regular graphs tends to $\Omega(n^{0.864138})$.


Algorithmica ◽  
2021 ◽  
Author(s):  
Guido Brückner ◽  
Nadine Krisam ◽  
Tamara Mchedlidze

AbstractWe introduce and study level-planar straight-line drawings with a fixed number $$\lambda $$ λ of slopes. For proper level graphs (all edges connect vertices of adjacent levels), we give an $$O(n \log ^2 n / \log \log n)$$ O ( n log 2 n / log log n ) -time algorithm that either finds such a drawing or determines that no such drawing exists. Moreover, we consider the partial drawing extension problem, where we seek to extend an immutable drawing of a subgraph to a drawing of the whole graph, and the simultaneous drawing problem, which asks about the existence of drawings of two graphs whose restrictions to their shared subgraph coincide. We present $$O(n^{4/3} \log n)$$ O ( n 4 / 3 log n ) -time and $$O(\lambda n^{10/3} \log n)$$ O ( λ n 10 / 3 log n ) -time algorithms for these respective problems on proper level-planar graphs. We complement these positive results by showing that testing whether non-proper level graphs admit level-planar drawings with $$\lambda $$ λ slopes is -hard even in restricted cases.


Sign in / Sign up

Export Citation Format

Share Document