An Upper Bound for the Ramsey Number of a Cycle of Length Four Versus Wheels

Author(s):  
Surahmat ◽  
Edy Tri Baskoro ◽  
Saladin Uttunggadewa ◽  
Hajo Broersma
Keyword(s):  
2018 ◽  
Author(s):  
Benjamin Smith

We defined number of points with an inter-distance of β or more to necessarily exist on a plane. Furthermore, we aimed to reduce the range of this minimum value. We first showed that the upper bound of this value could be scaled by , and further reduced the constant that was multiplied. We compared the upper bound of and the Ramsey number in a special case and confirmed that was a better upper bound than except when were both small or trivial.


10.37236/257 ◽  
2009 ◽  
Vol 16 (1) ◽  
Author(s):  
Veselin Jungić ◽  
Tomáš Kaiser ◽  
Daniel Král'

We study the mixed Ramsey number $maxR(n,{K_m},{K_r})$, defined as the maximum number of colours in an edge-colouring of the complete graph $K_n$, such that $K_n$ has no monochromatic complete subgraph on $m$ vertices and no rainbow complete subgraph on $r$ vertices. Improving an upper bound of Axenovich and Iverson, we show that $maxR(n,{K_m},{K_4}) \leq n^{3/2}\sqrt{2m}$ for all $m\geq 3$. Further, we discuss a possible way to improve their lower bound on $maxR(n,{K_4},{K_4})$ based on incidence graphs of finite projective planes.


10.37236/1662 ◽  
2001 ◽  
Vol 9 (1) ◽  
Author(s):  
Benny Sudakov

The Ramsey number $r(C_l, K_n)$ is the smallest positive integer $m$ such that every graph of order $m$ contains either cycle of length $l$ or a set of $n$ independent vertices. In this short note we slightly improve the best known upper bound on $r(C_l, K_n)$ for odd $l$.


10.37236/514 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Yi Zhao

A conjecture of Loebl, also known as the $(n/2 - n/2 - n/2)$ Conjecture, states that if $G$ is an $n$-vertex graph in which at least $n/2$ of the vertices have degree at least $n/2$, then $G$ contains all trees with at most $n/2$ edges as subgraphs. Applying the Regularity Lemma, Ajtai, Komlós and Szemerédi proved an approximate version of this conjecture. We prove it exactly for sufficiently large $n$. This immediately gives a tight upper bound for the Ramsey number of trees, and partially confirms a conjecture of Burr and Erdős.


10.37236/9358 ◽  
2021 ◽  
Vol 28 (1) ◽  
Author(s):  
Maria Axenovich ◽  
Izolda Gorgol

We write $F{\buildrel {\text{ind}} \over \longrightarrow}(H,G)$ for graphs $F, G,$ and $H$, if for any coloring of the edges of $F$ in red and blue, there is either a red induced copy of $H$ or a blue induced copy of $G$. For graphs $G$ and $H$, let $\mathrm{IR}(H,G)$ be the smallest number of vertices in a graph $F$ such that $F{\buildrel {\text{ind}} \over \longrightarrow}(H,G)$. In this note we consider the case when $G$ is a star on $n$ edges, for large $n$ and $H$ is a fixed graph. We prove that  $$ (\chi(H)-1) n \leq \mathrm{IR}(H, K_{1,n}) \leq (\chi(H)-1)^2n + \epsilon n,$$ for any $\epsilon>0$,  sufficiently large $n$, and $\chi(H)$ denoting the chromatic number of $H$. The lower bound is asymptotically tight  for any fixed bipartite $H$. The upper bound is attained up to a constant factor, for example when $H$ is a clique.


10.37236/8775 ◽  
2020 ◽  
Vol 27 (2) ◽  
Author(s):  
Dániel Gerbner

Given a graph $G$, a hypergraph $\mathcal{H}$ is a Berge copy of $F$ if $V(G)\subset V(\mathcal{H})$ and there is a bijection $f:E(G)\rightarrow E(\mathcal{H})$ such that for any edge $e$ of $G$ we have $e\subset f(e)$. We study Ramsey problems for Berge copies of graphs, i.e. the smallest number of vertices of a complete $r$-uniform hypergraph, such that if we color the hyperedges with $c$ colors, there is a monochromatic Berge copy of $G$. We obtain a couple results regarding these problems. In particular, we determine for which $r$ and $c$ the Ramsey number can be super-linear. We also show a new way to obtain lower bounds, and improve the general lower bounds by a large margin. In the specific case $G=K_n$ and $r=2c-1$, we obtain an upper bound that is sharp besides a constant term, improving earlier results.


10.37236/8085 ◽  
2019 ◽  
Vol 26 (2) ◽  
Author(s):  
Dhruv Rohatgi

For ordered graphs $G$ and $H$, the ordered Ramsey number $r_<(G,H)$ is the smallest $n$ such that every red/blue edge coloring of the complete ordered graph on vertices $\{1,\dots,n\}$ contains either a blue copy of $G$ or a red copy of $H$, where the embedding must preserve the relative order of vertices. One number of interest, first studied by Conlon, Fox, Lee, and Sudakov, is the off-diagonal ordered Ramsey number $r_<(M, K_3)$, where $M$ is an ordered matching on $n$ vertices. In particular, Conlon et al. asked what asymptotic bounds (in $n$) can be obtained for $\max r_<(M, K_3)$, where the maximum is over all ordered matchings $M$ on $n$ vertices. The best-known upper bound is $O(n^2/\log n)$, whereas the best-known lower bound is $\Omega((n/\log n)^{4/3})$, and Conlon et al. hypothesize that there is some fixed $\epsilon > 0$ such that $r_<(M, K_3) = O(n^{2-\epsilon})$ for every ordered matching $M$. We resolve two special cases of this conjecture. We show that the off-diagonal ordered Ramsey numbers for ordered matchings in which edges do not cross are nearly linear. We also prove a truly sub-quadratic upper bound for random ordered matchings with interval chromatic number $2$.


1985 ◽  
Vol 9 (4) ◽  
pp. 483-485 ◽  
Author(s):  
H. Harborth ◽  
I. Mengersen
Keyword(s):  

2019 ◽  
Vol 342 (1) ◽  
pp. 217-220 ◽  
Author(s):  
Qizhong Lin ◽  
Weiji Chen

Author(s):  
Guido Besomi ◽  
Matías Pavez-Signé ◽  
Maya Stein

Abstract We prove the Erdős–Sós conjecture for trees with bounded maximum degree and large dense host graphs. As a corollary, we obtain an upper bound on the multicolour Ramsey number of large trees whose maximum degree is bounded by a constant.


Sign in / Sign up

Export Citation Format

Share Document