Fuzzy Knowledge Incorporation in Crossover and Mutation

Author(s):  
Jun Zhang ◽  
Henry S. H. Chung ◽  
Alan W. L. Lo ◽  
B. J. Hu
2018 ◽  
Vol 1 (1) ◽  
pp. 2-19
Author(s):  
Mahmood Sh. Majeed ◽  
Raid W. Daoud

A new method proposed in this paper to compute the fitness in Genetic Algorithms (GAs). In this new method the number of regions, which assigned for the population, divides the time. The fitness computation here differ from the previous methods, by compute it for each portion of the population as first pass, then the second pass begin to compute the fitness for population that lye in the portion which have bigger fitness value. The crossover and mutation and other GAs operator will do its work only for biggest fitness portion of the population. In this method, we can get a suitable and accurate group of proper solution for indexed profile of the photonic crystal fiber (PCF).


2020 ◽  
Vol 15 (4) ◽  
pp. 287-299
Author(s):  
Jie Zhang ◽  
Junhong Feng ◽  
Fang-Xiang Wu

Background: : The brain networks can provide us an effective way to analyze brain function and brain disease detection. In brain networks, there exist some import neural unit modules, which contain meaningful biological insights. Objective:: Therefore, we need to find the optimal neural unit modules effectively and efficiently. Method:: In this study, we propose a novel algorithm to find community modules of brain networks by combining Neighbor Index and Discrete Particle Swarm Optimization (DPSO) with dynamic crossover, abbreviated as NIDPSO. The differences between this study and the existing ones lie in that NIDPSO is proposed first to find community modules of brain networks, and dose not need to predefine and preestimate the number of communities in advance. Results: : We generate a neighbor index table to alleviate and eliminate ineffective searches and design a novel coding by which we can determine the community without computing the distances amongst vertices in brain networks. Furthermore, dynamic crossover and mutation operators are designed to modify NIDPSO so as to alleviate the drawback of premature convergence in DPSO. Conclusion: The numerical results performing on several resting-state functional MRI brain networks demonstrate that NIDPSO outperforms or is comparable with other competing methods in terms of modularity, coverage and conductance metrics.


2011 ◽  
Vol 10 (02) ◽  
pp. 373-406 ◽  
Author(s):  
ABDEL-RAHMAN HEDAR ◽  
EMAD MABROUK ◽  
MASAO FUKUSHIMA

Since the first appearance of the Genetic Programming (GP) algorithm, extensive theoretical and application studies on it have been conducted. Nowadays, the GP algorithm is considered one of the most important tools in Artificial Intelligence (AI). Nevertheless, several questions have been raised about the complexity of the GP algorithm and the disruption effect of the crossover and mutation operators. In this paper, the Tabu Programming (TP) algorithm is proposed to employ the search strategy of the classical Tabu Search algorithm with the tree data structure. Moreover, the TP algorithm exploits a set of local search procedures over a tree space in order to mitigate the drawbacks of the crossover and mutation operators. Extensive numerical experiments are performed to study the performance of the proposed algorithm for a set of benchmark problems. The results of those experiments show that the TP algorithm compares favorably to recent versions of the GP algorithm in terms of computational efforts and the rate of success. Finally, we present a comprehensive framework called Meta-Heuristics Programming (MHP) as general machine learning tools.


1999 ◽  
Vol 1 (2) ◽  
pp. 115-126 ◽  
Author(s):  
J. W. Davidson ◽  
D. Savic ◽  
G. A. Walters

The paper describes a new regression method for creating polynomial models. The method combines numerical and symbolic regression. Genetic programming finds the form of polynomial expressions, and least squares optimization finds the values for the constants in the expressions. The incorporation of least squares optimization within symbolic regression is made possible by a rule-based component that algebraically transforms expressions to equivalent forms that are suitable for least squares optimization. The paper describes new operators of crossover and mutation that improve performance, and a new method for creating starting solutions that avoids the problem of under-determined functions. An example application demonstrates the trade-off between model complexity and accuracy of a set of approximator functions created for the Colebrook–White formula.


VLSI Design ◽  
1994 ◽  
Vol 2 (2) ◽  
pp. 105-116
Author(s):  
S. Muddappa ◽  
R. Z. Makki ◽  
Z. Michalewicz ◽  
S. Isukapalli

In this paper we present a new tool for the encoding of multi-level finite state machines based on the concept of evolution programming. Evolution programs are stochastic adaptive algorithms, based on the paradigm of genetic algorithms whose search methods model some natural phenomenon: genetic inheritance and Darwinian strife for survival. Crossover and mutation rates were tailored to the state assignment problem experimentally. We present results over a wide range of MCNC benchmarks which demonstrate the effectiveness of the new tool. The results show that evolution programs can be effectively applied to state assignment.


Sign in / Sign up

Export Citation Format

Share Document