least squares optimization
Recently Published Documents


TOTAL DOCUMENTS

164
(FIVE YEARS 44)

H-INDEX

21
(FIVE YEARS 2)

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6675
Author(s):  
Viktor Fairuschin ◽  
Felix Brand ◽  
Alexander Backer ◽  
Klaus Stefan Drese

Nondestructive evaluation of elastic properties plays a critical role in condition monitoring of thin structures such as sheets, plates or tubes. Recent research has shown that elastic properties of such structures can be determined with remarkable accuracy by utilizing the dispersive nature of guided acoustic waves propagating in them. However, existing techniques largely require complicated and expensive equipment or involve accurate measurement of an additional quantity, rendering them impractical for industrial use. In this work, we present a new approach that requires only a pair of piezoelectric transducers used to measure the group velocities ratio of fundamental guided wave modes. A numerical model based on the spectral collocation method is used to fit the measured data by solving a bound-constrained nonlinear least squares optimization problem. We verify our approach on both simulated and experimental data and achieve accuracies similar to those reported by other authors. The high accuracy and simple measurement setup of our approach makes it eminently suitable for use in industrial environments.


2021 ◽  
Author(s):  
Kuros Yalpani

An algorithm is proposed that extracts 3D shape from shading information in a digital image. The algorithm assumes that there is only a single source of light producing the image, that the surface of the shape giving rise to the image is Lambertian (matte) and that its shape can be locally approximated by a quadratic function. Previous work shows that under these assumptions, robust shape from shading is possible, though slow for large images because a non-linear optimization method is applied in order to estimate local quadratic surface patches from image intensities. The work presented here shows that local quadratic surface patch estimates can be computed, without prior knowledge of the light source direction, via a linear least squares optimization, thus greatly improving the algebraic complexity and run-time of the existing algorithms.


2021 ◽  
Author(s):  
Kuros Yalpani

An algorithm is proposed that extracts 3D shape from shading information in a digital image. The algorithm assumes that there is only a single source of light producing the image, that the surface of the shape giving rise to the image is Lambertian (matte) and that its shape can be locally approximated by a quadratic function. Previous work shows that under these assumptions, robust shape from shading is possible, though slow for large images because a non-linear optimization method is applied in order to estimate local quadratic surface patches from image intensities. The work presented here shows that local quadratic surface patch estimates can be computed, without prior knowledge of the light source direction, via a linear least squares optimization, thus greatly improving the algebraic complexity and run-time of this existing algorithms.


2021 ◽  
Author(s):  
Kuros Yalpani

An algorithm is proposed that extracts 3D shape from shading information in a digital image. The algorithm assumes that there is only a single source of light producing the image, that the surface of the shape giving rise to the image is Lambertian (matte) and that its shape can be locally approximated by a quadratic function. Previous work shows that under these assumptions, robust shape from shading is possible, though slow for large images because a non-linear optimization method is applied in order to estimate local quadratic surface patches from image intensities. The work presented here shows that local quadratic surface patch estimates can be computed, without prior knowledge of the light source direction, via a linear least squares optimization, thus greatly improving the algebraic complexity and run-time of this existing algorithms.


Actuators ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 168
Author(s):  
Pelin Berik ◽  
Peter L. Bishay

The objective of this work is to characterize the nonlinear dependence of the piezoelectric d15 shear coefficient of a composite actuator on the static electric field and include this effect in finite element (FE) simulations. The Levenberg-Marquardt nonlinear least squares optimization algorithm implemented in MATLAB was applied to acquire the piezoelectric shear coefficient parameters. The nonlinear piezoelectric d15 shear constant of the composite actuator integrated with piezoceramic d15 patches was obtained to be 732 pC/N at 198 V. The experimental benchmark was simulated using a three-dimensional piezoelectric FE model by taking piezoelectric nonlinearity into consideration. The results revealed that the piezoelectric shear d15 coefficient increased nonlinearly under static applied electric fields over 0.5 kV/cm. A comparison between the generated transverse deflections of the linear and nonlinear FE models was also performed.


Sign in / Sign up

Export Citation Format

Share Document