Applying Ergodic Theory to Improve the Noise Performance of DiBerential Chaos Shift Keying

Author(s):  
Henry Leung ◽  
Haiyang Yu
2012 ◽  
Vol 22 (08) ◽  
pp. 1250201 ◽  
Author(s):  
W. K. XU ◽  
L. WANG ◽  
G. KOLUMBÁN

In a binary Transmitted Reference (TR) system each bit is encoded into two wavelets of finite duration. The information is transmitted by the sign of correlation measured between the two wavelets. The Code-Shifted Differential Chaos Shift Keying (CS-DCSK) modulation scheme transmits the two wavelets in the same time slot and applies two Walsh code sequences to keep the wavelets separated. The CS-DCSK modulation scheme is generalized here by transmitting more than one information bearing wavelets with one reference. The orthogonality of wavelets is assured by different Walsh code sequences. The new Generalized CS-DCSK (GCS-DCSK) scheme is a multilevel modulation where the symbol period is kept constant but the data rate can be varied in an adaptive manner by adding new or removing existing information bearing wavelets, each of them is isolated by Walsh code. Exploiting the Gaussian approximation, an analytical expression is derived for the noise performance of GCS-DCSK modulation. Its accuracy is verified by computer simulation.


2021 ◽  
Vol 1804 (1) ◽  
pp. 012088
Author(s):  
Salsabeel S. Hasan ◽  
Zahir M. Hussain

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Nizar Al Bassam ◽  
Oday Jerew

A new chaotic scheme named Flipped Chaotic On-Off Keying (FCOOK) is proposed for binary transmission. In FCOOK, the low correlation value between the stationary signal and its mirrored version is utilized. Transmitted signal for binary 1 is a chaotic segment added to its time flipped (mirrored) version within one bit duration, while in binary 0, no transmission takes place within the same bit duration. The proposed scheme is compared with the standard chaotic systems: Differential Chaos Shift Keying (DCSK) and Correlation Delay Shift Keying (CDSK). The Bit Error Rate (BER) of FCOOK is studied analytically based on Gaussian approximation method. Results show that the BER performance of FCOOK outperforms DCSK and CDSK in AWGN channel environment and with variousEb/Nolevels. Additionally, FCOOK offers a double bit rate compared with the standard DCSK.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Gang Zhang ◽  
Yi man Hao ◽  
Tian qi Zhang

The major drawback of the differential chaos shift keying (DCSK) system is that equal time and energy are spent on the reference and data signal. This paper presents the design and performance analysis of a short reference multifold rate DCSK (SRMR-DCSK) system to overcome the major drawback. The SRMR-DCSK system is proposed to enhance the data rate of the short reference differential chaos shift keying (SR-DCSK) system. By recycling each reference signal in SR-DCSK, the data slot carries N bits of data and by P times. As a result, compared with SR-DCSK, the proposed system has a higher data transmission rate and evaluates the energy efficiency with respect to the conventional DCSK system. To further improve the bit-error-rate (BER) performance over Rayleigh fading channels, the multiple-input single-output SRMR-DCSK (MISO-SRMR-DCSK) is also studied. The BER expression of the proposed system is derived based on Gaussian approximation (GA), and simulations in Rayleigh fading channels are performed. Simulation results show a perfect match with the analytical expression.


Sign in / Sign up

Export Citation Format

Share Document