Model-Based Pose Estimation of Human Motion Using Orthogonal Simulated Annealing

Author(s):  
Kual-Zheng Lee ◽  
Ting-Wei Liu ◽  
Shinn-Ying Ho
2015 ◽  
Vol 2 (2) ◽  
pp. 51 ◽  
Author(s):  
Vivek Maik ◽  
Jinho Park ◽  
Daehee Kim ◽  
Joonki Paik

Author(s):  
Tongtong Chen ◽  
Bin Dai ◽  
Daxue Liu ◽  
Hao Fu ◽  
Jinze Song ◽  
...  

2021 ◽  
Vol 10 ◽  
pp. 117957272110223
Author(s):  
Thomas Hellsten ◽  
Jonny Karlsson ◽  
Muhammed Shamsuzzaman ◽  
Göran Pulkkis

Background: Several factors, including the aging population and the recent corona pandemic, have increased the need for cost effective, easy-to-use and reliable telerehabilitation services. Computer vision-based marker-less human pose estimation is a promising variant of telerehabilitation and is currently an intensive research topic. It has attracted significant interest for detailed motion analysis, as it does not need arrangement of external fiducials while capturing motion data from images. This is promising for rehabilitation applications, as they enable analysis and supervision of clients’ exercises and reduce clients’ need for visiting physiotherapists in person. However, development of a marker-less motion analysis system with precise accuracy for joint identification, joint angle measurements and advanced motion analysis is an open challenge. Objectives: The main objective of this paper is to provide a critical overview of recent computer vision-based marker-less human pose estimation systems and their applicability for rehabilitation application. An overview of some existing marker-less rehabilitation applications is also provided. Methods: This paper presents a critical review of recent computer vision-based marker-less human pose estimation systems with focus on their provided joint localization accuracy in comparison to physiotherapy requirements and ease of use. The accuracy, in terms of the capability to measure the knee angle, is analysed using simulation. Results: Current pose estimation systems use 2D, 3D, multiple and single view-based techniques. The most promising techniques from a physiotherapy point of view are 3D marker-less pose estimation based on a single view as these can perform advanced motion analysis of the human body while only requiring a single camera and a computing device. Preliminary simulations reveal that some proposed systems already provide a sufficient accuracy for 2D joint angle estimations. Conclusions: Even though test results of different applications for some proposed techniques are promising, more rigour testing is required for validating their accuracy before they can be widely adopted in advanced rehabilitation applications.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4141
Author(s):  
Wouter Houtman ◽  
Gosse Bijlenga ◽  
Elena Torta ◽  
René van de Molengraft

For robots to execute their navigation tasks both fast and safely in the presence of humans, it is necessary to make predictions about the route those humans intend to follow. Within this work, a model-based method is proposed that relates human motion behavior perceived from RGBD input to the constraints imposed by the environment by considering typical human routing alternatives. Multiple hypotheses about routing options of a human towards local semantic goal locations are created and validated, including explicit collision avoidance routes. It is demonstrated, with real-time, real-life experiments, that a coarse discretization based on the semantics of the environment suffices to make a proper distinction between a person going, for example, to the left or the right on an intersection. As such, a scalable and explainable solution is presented, which is suitable for incorporation within navigation algorithms.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Kunyong Chen ◽  
Yong Zhao ◽  
Jiaxiang Wang ◽  
Hongwen Xing ◽  
Zhengjian Dong

Purpose This paper aims to propose a fast and robust 3D point set registration method for pose estimation of assembly features with few distinctive local features in the manufacturing process. Design/methodology/approach The distance between the two 3D objects is analytically approximated by the implicit representation of the target model. Specifically, the implicit B-spline surface is adopted as an interface to derive the distance metric. With the distance metric, the point set registration problem is formulated into an unconstrained nonlinear least-squares optimization problem. Simulated annealing nested Gauss-Newton method is designed to solve the non-convex problem. This integration of gradient-based optimization and heuristic searching strategy guarantees both global robustness and sufficient efficiency. Findings The proposed method improves the registration efficiency while maintaining high accuracy compared with several commonly used approaches. Convergence can be guaranteed even with critical initial poses or in partial overlapping conditions. The multiple flanges pose estimation experiment validates the effectiveness of the proposed method in real-world applications. Originality/value The proposed registration method is much more efficient because no feature estimation or point-wise correspondences update are performed. At each iteration of the Gauss–Newton optimization, the poses are updated in a singularity-free format without taking the derivatives of a bunch of scalar trigonometric functions. The advantage of the simulated annealing searching strategy is combined to improve global robustness. The implementation is relatively straightforward, which can be easily integrated to realize automatic pose estimation to guide the assembly process.


Sign in / Sign up

Export Citation Format

Share Document