human motion analysis
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 41)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yan Wang ◽  
Yuchen Zhang ◽  
LinJun Shen ◽  
ShuMing Wang

As a whole-body sport, skipping rope plays an increasingly important role in daily life. In rope-skipping education, due to the lack of professional teachers, the training efficiency of students is low. The rope-skipping monitoring device is heavy and expensive, and the cost of labor statistics and energy consumption are high. In order to quickly analyze the movement process of students and provide correct guidance, this article implements the movement analysis method of the human body movement process. The problem of limb posture analysis in rope skipping is transformed into a multilabel classification problem, a real-time human motion analysis method based on mobile vision is proposed, and the algorithm model is verified in the rope-skipping scene. The experimental results prove that this paper proposes the improved algorithm, which achieved the expected effect. In the analysis of rope-skipping action, the choice of hyperparameters during the experiment is introduced, and it is verified that the proposed ALSTM-LSTM can solve the problem of multilabel classification in the rope-skipping process. The accuracy rate reaches 95.1%, and it can provide the best in all indicators and good performance. It is of great significance for movement analysis and movement quality evaluation during exercise.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Quanping Shen ◽  
Songzhong Ye

Technical movement analysis requires specialized domain knowledge and processing a large amount of data, and the advantages of AI in processing data can improve the efficiency of data analysis. In this paper, we propose a feature pyramid network-based temporal action detection (FPN-TAD) algorithm, which is used to solve the problem that the action proposal module has a low recall rate for small-scale temporal target action regions in the current video temporal action detection algorithm research. This paper is divided into three parts. The first part is an overview of the algorithm; the second part elaborates the network structure and the working principle of the FPN-TAD algorithm; and the third part gives the experimental results and analysis of the algorithm.


2021 ◽  
Author(s):  
Erin Hannink ◽  
Maedeh Mansoubi ◽  
Neil Cronin ◽  
Benjamin Waller ◽  
Helen Dawes

Back pain is a common form of disability worldwide, and one condition that causes chronic back pain is axial spondyloarthritis (axSpA) which primarily affects spinal joints resulting in pain and joint stiffness. Markerless human motion analysis uses a computer-vision (CV) aided system to automate human movement from videos. In this protocol, the study will aim to estimate criterion validity and reliability of functional movement measurement using a CV-aided system by comparing it to a standard clinical measurement; secondarily, to assess the feasibility of the CV-aided system in the lab and home environments. An index of tests of functional movement, range of motion and posture will be captured on video and measured using the CV-aided system in the lab and home environments. The index of tests will be compared to measurement performed by an experienced physiotherapist. Bland-Altman plots will be used to determine agreement between the methods, and reliability and completion rates will be used to determine the feasibility of the CV-aided system.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6642
Author(s):  
Javier González-Alonso ◽  
David Oviedo-Pastor ◽  
Héctor J. Aguado ◽  
Francisco J. Díaz-Pernas ◽  
David González-Ortega ◽  
...  

Recent studies confirm the applicability of Inertial Measurement Unit (IMU)-based systems for human motion analysis. Notwithstanding, high-end IMU-based commercial solutions are yet too expensive and complex to democratize their use among a wide range of potential users. Less featured entry-level commercial solutions are being introduced in the market, trying to fill this gap, but still present some limitations that need to be overcome. At the same time, there is a growing number of scientific papers using not commercial, but custom do-it-yourself IMU-based systems in medical and sports applications. Even though these solutions can help to popularize the use of this technology, they have more limited features and the description on how to design and build them from scratch is yet too scarce in the literature. The aim of this work is two-fold: (1) Proving the feasibility of building an affordable custom solution aimed at simultaneous multiple body parts orientation tracking; while providing a detailed bottom-up description of the required hardware, tools, and mathematical operations to estimate and represent 3D movement in real-time. (2) Showing how the introduction of a custom 2.4 GHz communication protocol including a channel hopping strategy can address some of the current communication limitations of entry-level commercial solutions. The proposed system can be used for wireless real-time human body parts orientation tracking with up to 10 custom sensors, at least at 50 Hz. In addition, it provides a more reliable motion data acquisition in Bluetooth and Wi-Fi crowded environments, where the use of entry-level commercial solutions might be unfeasible. This system can be used as a groundwork for developing affordable human motion analysis solutions that do not require an accurate kinematic analysis.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6202
Author(s):  
Pedro Albuquerque ◽  
Tanmay Tulsidas Verlekar ◽  
Paulo Lobato Correia ◽  
Luís Ducla Soares

Human motion analysis provides useful information for the diagnosis and recovery assessment of people suffering from pathologies, such as those affecting the way of walking, i.e., gait. With recent developments in deep learning, state-of-the-art performance can now be achieved using a single 2D-RGB-camera-based gait analysis system, offering an objective assessment of gait-related pathologies. Such systems provide a valuable complement/alternative to the current standard practice of subjective assessment. Most 2D-RGB-camera-based gait analysis approaches rely on compact gait representations, such as the gait energy image, which summarize the characteristics of a walking sequence into one single image. However, such compact representations do not fully capture the temporal information and dependencies between successive gait movements. This limitation is addressed by proposing a spatiotemporal deep learning approach that uses a selection of key frames to represent a gait cycle. Convolutional and recurrent deep neural networks were combined, processing each gait cycle as a collection of silhouette key frames, allowing the system to learn temporal patterns among the spatial features extracted at individual time instants. Trained with gait sequences from the GAIT-IT dataset, the proposed system is able to improve gait pathology classification accuracy, outperforming state-of-the-art solutions and achieving improved generalization on cross-dataset tests.


2021 ◽  
Vol 8 ◽  
Author(s):  
Honghu Xue ◽  
Rebecca Herzog ◽  
Till M. Berger ◽  
Tobias Bäumer ◽  
Anne Weissbach ◽  
...  

In medical tasks such as human motion analysis, computer-aided auxiliary systems have become the preferred choice for human experts for their high efficiency. However, conventional approaches are typically based on user-defined features such as movement onset times, peak velocities, motion vectors, or frequency domain analyses. Such approaches entail careful data post-processing or specific domain knowledge to achieve a meaningful feature extraction. Besides, they are prone to noise and the manual-defined features could hardly be re-used for other analyses. In this paper, we proposed probabilistic movement primitives (ProMPs), a widely-used approach in robot skill learning, to model human motions. The benefit of ProMPs is that the features are directly learned from the data and ProMPs can capture important features describing the trajectory shape, which can easily be extended to other tasks. Distinct from previous research, where classification tasks are mostly investigated, we applied ProMPs together with a variant of Kullback-Leibler (KL) divergence to quantify the effect of different transcranial current stimulation methods on human motions. We presented an initial result with 10 participants. The results validate ProMPs as a robust and effective feature extractor for human motions.


Symmetry ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1317
Author(s):  
Xin Huang ◽  
Yuanping Zhu ◽  
Shuqin Wang

Human motion retrieval and analysis is a useful means of activity recognition to 3D human bodies. An efficient method is proposed to estimate human motion by using symmetric joint points and limb features of various limb parts based on regression task. We primarily obtain the 3D coordinates of symmetric joint points based on the located waist and hip points. By introducing three critical feature points on torso and symmetric joint points’ matching on motion video sequences, the 3D coordinates of symmetric joint points and its asymmetric limb features will not be affected by shading and interference of limb on different postures. With the asymmetric limb features of various human parts, a dynamic regulated Fuzzy neural network (DRFNN) is proposed to estimate human motion for different asymmetric postures using learning algorithm of network parameters and weights. Finally, human sequential actions corresponding to different asymmetric postures are presented according to the best retrieval results by DRFNN based on 3D human action database. Experiments show that compared with the traditional adaptive self-organizing fuzzy neural network (SOFNN) model, the proposed algorithm has higher estimation accuracy and better presentation results compared with the existing human motion analysis algorithms.


Author(s):  
Bappaditya Debnath ◽  
Mary O’Brien ◽  
Motonori Yamaguchi ◽  
Ardhendu Behera

AbstractThe computer vision community has extensively researched the area of human motion analysis, which primarily focuses on pose estimation, activity recognition, pose or gesture recognition and so on. However for many applications, like monitoring of functional rehabilitation of patients with musculo skeletal or physical impairments, the requirement is to comparatively evaluate human motion. In this survey, we capture important literature on vision-based monitoring and physical rehabilitation that focuses on comparative evaluation of human motion during the past two decades and discuss the state of current research in this area. Unlike other reviews in this area, which are written from a clinical objective, this article presents research in this area from a computer vision application perspective. We propose our own taxonomy of computer vision-based rehabilitation and assessment research which are further divided into sub-categories to capture novelties of each research. The review discusses the challenges of this domain due to the wide ranging human motion abnormalities and difficulty in automatically assessing those abnormalities. Finally, suggestions on the future direction of research are offered.


Sign in / Sign up

Export Citation Format

Share Document