A Simple Linear Time Algorithm for the Isomorphism Problem on Proper Circular-Arc Graphs

Author(s):  
Min Chih Lin ◽  
Francisco J. Soulignac ◽  
Jayme L. Szwarcfiter
2013 ◽  
Vol Vol. 15 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Andrew R. Curtis ◽  
Min Chih Lin ◽  
Ross M. Mcconnell ◽  
Yahav Nussbaum ◽  
Francisco Juan Soulignac ◽  
...  

Discrete Algorithms International audience We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. Our algorithm is similar to the isomorphism algorithm for interval graphs of Lueker and Booth, but works on PC trees, which are unrooted and have a cyclic nature, rather than with PQ trees, which are rooted. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, Γ circular-arc graphs, proper circular-arc graphs and convex-round graphs.


Algorithmica ◽  
2012 ◽  
Vol 66 (2) ◽  
pp. 369-396 ◽  
Author(s):  
Ching-Chi Lin ◽  
Gen-Huey Chen ◽  
Gerard J. Chang

2015 ◽  
Vol 33 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Zuosong Liang ◽  
Erfang Shan ◽  
Yuzhong Zhang

2018 ◽  
Author(s):  
João Pedro W. Bernardi ◽  
Sheila M. De Almeida ◽  
Leandro M. Zatesko

Deciding if a graph is Δ-edge-colourable (resp. (Δ + 1)-total colourable), although it is an NP-complete problem for graphs in general, is polynomially solvable for interval graphs of odd (resp. even) maximum degree Δ. An interesting superclass of the proper interval graphs are the proper circular-arc graphs, for which we suspect that Δ-edge-colourability is linear-time decidable. This work presents sufficient conditions for Δ-edge-colourability, (Δ + 1)-total colourability, and (Δ+2)-total colourability of proper circular-arc graphs. Our proofs are constructive and yield polynomial-time algorithms.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


Sign in / Sign up

Export Citation Format

Share Document