A linear-time algorithm for clique-coloring problem in circular-arc graphs

2015 ◽  
Vol 33 (1) ◽  
pp. 147-155 ◽  
Author(s):  
Zuosong Liang ◽  
Erfang Shan ◽  
Yuzhong Zhang
2013 ◽  
Vol Vol. 15 no. 1 (Discrete Algorithms) ◽  
Author(s):  
Andrew R. Curtis ◽  
Min Chih Lin ◽  
Ross M. Mcconnell ◽  
Yahav Nussbaum ◽  
Francisco Juan Soulignac ◽  
...  

Discrete Algorithms International audience We give a linear-time algorithm that checks for isomorphism between two 0-1 matrices that obey the circular-ones property. Our algorithm is similar to the isomorphism algorithm for interval graphs of Lueker and Booth, but works on PC trees, which are unrooted and have a cyclic nature, rather than with PQ trees, which are rooted. This algorithm leads to linear-time isomorphism algorithms for related graph classes, including Helly circular-arc graphs, Γ circular-arc graphs, proper circular-arc graphs and convex-round graphs.


Algorithmica ◽  
2012 ◽  
Vol 66 (2) ◽  
pp. 369-396 ◽  
Author(s):  
Ching-Chi Lin ◽  
Gen-Huey Chen ◽  
Gerard J. Chang

2019 ◽  
Vol 11 (06) ◽  
pp. 1950066
Author(s):  
S. Arumugam ◽  
K. Raja Chandrasekar

A dominator coloring (respectively, total dominator coloring) of a graph [Formula: see text] is a proper coloring [Formula: see text] of [Formula: see text] such that each closed neighborhood (respectively, open neighborhood) of every vertex of [Formula: see text] contains a color class of [Formula: see text] The minimum number of colors required for a dominator coloring (respectively, total dominator coloring) of [Formula: see text] is called the dominator chromatic number (respectively, total dominator chromatic number) of [Formula: see text] and is denoted by [Formula: see text] (respectively, [Formula: see text]). In this paper, we prove that the dominator coloring problem and the total dominator coloring problem are solvable in linear time for trestled graphs.


Mathematics ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 293
Author(s):  
Xinyue Liu ◽  
Huiqin Jiang ◽  
Pu Wu ◽  
Zehui Shao

For a simple graph G=(V,E) with no isolated vertices, a total Roman {3}-dominating function(TR3DF) on G is a function f:V(G)→{0,1,2,3} having the property that (i) ∑w∈N(v)f(w)≥3 if f(v)=0; (ii) ∑w∈N(v)f(w)≥2 if f(v)=1; and (iii) every vertex v with f(v)≠0 has a neighbor u with f(u)≠0 for every vertex v∈V(G). The weight of a TR3DF f is the sum f(V)=∑v∈V(G)f(v) and the minimum weight of a total Roman {3}-dominating function on G is called the total Roman {3}-domination number denoted by γt{R3}(G). In this paper, we show that the total Roman {3}-domination problem is NP-complete for planar graphs and chordal bipartite graphs. Finally, we present a linear-time algorithm to compute the value of γt{R3} for trees.


1976 ◽  
Author(s):  
A. K. Jones ◽  
R. J. Lipton ◽  
L. Snyder

Sign in / Sign up

Export Citation Format

Share Document