Rigged Hilbert Spaces for the Dirac Formalism of Quantum Mechanics

2009 ◽  
pp. 651-660 ◽  
Author(s):  
J-P Antoine ◽  
Arno Bohm ◽  
Sujeev Wickramasekara
2016 ◽  
Vol 57 (7) ◽  
pp. 072105 ◽  
Author(s):  
E. Celeghini ◽  
M. Gadella ◽  
M. A. del Olmo

2012 ◽  
Vol 09 (02) ◽  
pp. 1260005 ◽  
Author(s):  
GIANNI CASSINELLI ◽  
PEKKA LAHTI

A classical problem in axiomatic quantum mechanics is deducing a Hilbert space realization for a quantum logic that admits a vector space coordinatization of the Piron–McLaren type. Our aim is to show how a theorem of M. Solér [Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra23 (1995) 219–243.] can be used to get a (partial) solution of this problem. We first derive a generalization of the Wigner theorem on symmetry transformations that holds already in the Piron–McLaren frame. Then we investigate which conditions on the quantum logic allow the use of Solér's theorem in order to obtain a Hilbert space solution for the coordinatization problem.


Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.


2007 ◽  
Vol 05 (02) ◽  
pp. 123-136 ◽  
Author(s):  
CLAUDE VALLÉE ◽  
VICENŢIU RĂDULESCU

We extend to infinite dimensional separable Hilbert spaces the Schur convexity property of eigenvalues of a symmetric matrix with real entries. Our framework includes both the case of linear, selfadjoint, compact operators, and that of linear selfadjoint operators that can be approximated by operators of finite rank and having a countable family of eigenvalues. The abstract results of the present paper are illustrated by several examples from mechanics or quantum mechanics, including the Sturm–Liouville problem, the Schrödinger equation, and the harmonic oscillator.


2019 ◽  
Vol 60 (8) ◽  
pp. 083508 ◽  
Author(s):  
E. Celeghini ◽  
M. Gadella ◽  
M. A. del Olmo

2016 ◽  
Vol 35 (3) ◽  
pp. 243-265 ◽  
Author(s):  
Giorgia Bellomonte ◽  
Camillo Trapani

2008 ◽  
Vol 05 (06) ◽  
pp. 989-1032 ◽  
Author(s):  
JESÚS CLEMENTE-GALLARDO ◽  
GIUSEPPE MARMO

In this paper we present a survey of the use of differential geometric formalisms to describe Quantum Mechanics. We analyze Schrödinger framework from this perspective and provide a description of the Weyl–Wigner construction. Finally, after reviewing the basics of the geometric formulation of quantum mechanics, we apply the methods presented to the most interesting cases of finite dimensional Hilbert spaces: those of two, three and four level systems (one qubit, one qutrit and two qubit systems). As a more practical application, we discuss the advantages that the geometric formulation of quantum mechanics can provide us with in the study of situations as the functional independence of entanglement witnesses.


Sign in / Sign up

Export Citation Format

Share Document