Linear Algebra and the Dirac Notation

Author(s):  
Phillip Kaye ◽  
Raymond Laflamme ◽  
Michele Mosca

We assume the reader has a strong background in elementary linear algebra. In this section we familiarize the reader with the algebraic notation used in quantum mechanics, remind the reader of some basic facts about complex vector spaces, and introduce some notions that might not have been covered in an elementary linear algebra course. The linear algebra notation used in quantum computing will likely be familiar to the student of physics, but may be alien to a student of mathematics or computer science. It is the Dirac notation, which was invented by Paul Dirac and which is used often in quantum mechanics. In mathematics and physics textbooks, vectors are often distinguished from scalars by writing an arrow over the identifying symbol: e.g a⃗. Sometimes boldface is used for this purpose: e.g. a. In the Dirac notation, the symbol identifying a vector is written inside a ‘ket’, and looks like |a⟩. We denote the dual vector for a (defined later) with a ‘bra’, written as ⟨a|. Then inner products will be written as ‘bra-kets’ (e.g. ⟨a|b⟩). We now carefully review the definitions of the main algebraic objects of interest, using the Dirac notation. The vector spaces we consider will be over the complex numbers, and are finite-dimensional, which significantly simplifies the mathematics we need. Such vector spaces are members of a class of vector spaces called Hilbert spaces. Nothing substantial is gained at this point by defining rigorously what a Hilbert space is, but virtually all the quantum computing literature refers to a finite-dimensional complex vector space by the name ‘Hilbert space’, and so we will follow this convention. We will use H to denote such a space. Since H is finite-dimensional, we can choose a basis and alternatively represent vectors (kets) in this basis as finite column vectors, and represent operators with finite matrices. As you see in Section 3, the Hilbert spaces of interest for quantum computing will typically have dimension 2n, for some positive integer n. This is because, as with classical information, we will construct larger state spaces by concatenating a string of smaller systems, usually of size two.

2019 ◽  
Vol 5 (2) ◽  
pp. 35
Author(s):  
David CARFI’

In this lecture note we define the S bases for the spaces of tempered distributions.These new bases are the analogous of Hilbert bases of separable Hilbert spaces for the continuous case (they are indexed by m-dimensional Euclidean spaces) and enjoy properties similar to those shown by algebraic bases in the finite dimensional case.The S bases are one possible rigorous and extremely manageable mathematical model for the "physical" bases used in Quantum Mechanics.


Author(s):  
Chris Heunen ◽  
Jamie Vicary

This book assumes familiarity with some basic ideas from category theory, linear algebra and quantum computing. This self-contained chapter gives a quick summary of the essential aspects of these areas, including categories, functors, natural transformations, vector spaces, Hilbert spaces, tensor products, density matrices, measurement and quantum teleportation.


2005 ◽  
Vol 70 (2) ◽  
pp. 353-359 ◽  
Author(s):  
J. Michael Dunn ◽  
Tobias J. Hagge ◽  
Lawrence S. Moss ◽  
Zhenghan Wang

§1. Introduction. Our understanding of Nature comes in layers, so should the development of logic. Classic logic is an indispensable part of our knowledge, and its interactions with computer science have recently dramatically changed our life. A new layer of logic has been developing ever since the discovery of quantum mechanics. G. D. Birkhoff and von Neumann introduced quantum logic in a seminal paper in 1936 [1]. But the definition of quantum logic varies among authors (see [2]). How to capture the logic structure inherent in quantum mechanics is very interesting and challenging. Given the close connection between classical logic and theoretical computer science as exemplified by the coincidence of computable functions through Turing machines, recursive function theory, and λ-calculus, we are interested in how to gain some insights about quantum logic from quantum computing. In this note we make some observations about quantum logic as motivated by quantum computing (see [5]) and hope more people will explore this connection.The quantum logic as envisioned by Birkhoff and von Neumann is based on the lattice of closed subspaces of a Hilbert space, usually an infinite dimensional one. The quantum logic of a fixed Hilbert space ℍ in this note is the variety of all the true equations with finitely many variables using the connectives meet, join and negation. Quantum computing is theoretically based on quantum systems with finite dimensional Hilbert spaces, especially the states space of a qubit ℂ2. (Actually the qubit is merely a convenience.


2005 ◽  
Vol 2005 (14) ◽  
pp. 2241-2275 ◽  
Author(s):  
Alexey A. Kryukov

Isomorphisms of separable Hilbert spaces are analogous to isomorphisms ofn-dimensional vector spaces. However, whilen-dimensional spaces in applications are always realized as the Euclidean spaceRn, Hilbert spaces admit various useful realizations as spaces of functions. In the paper this simple observation is used to construct a fruitful formalism of local coordinates on Hilbert manifolds. Images of charts on manifolds in the formalism are allowed to belong to arbitrary Hilbert spaces of functions including spaces of generalized functions. Tensor equations then describe families of functional equations on various spaces of functions. The formalism itself and its applications in linear algebra, differential equations, and differential geometry are carefully analyzed.


2012 ◽  
Vol 09 (02) ◽  
pp. 1260005 ◽  
Author(s):  
GIANNI CASSINELLI ◽  
PEKKA LAHTI

A classical problem in axiomatic quantum mechanics is deducing a Hilbert space realization for a quantum logic that admits a vector space coordinatization of the Piron–McLaren type. Our aim is to show how a theorem of M. Solér [Characterization of Hilbert spaces by orthomodular spaces, Comm. Algebra23 (1995) 219–243.] can be used to get a (partial) solution of this problem. We first derive a generalization of the Wigner theorem on symmetry transformations that holds already in the Piron–McLaren frame. Then we investigate which conditions on the quantum logic allow the use of Solér's theorem in order to obtain a Hilbert space solution for the coordinatization problem.


1976 ◽  
Vol 28 (4) ◽  
pp. 889-896
Author(s):  
Frank Zorzitto

Consider a system of N linear transformations A1, … , AN: V → W, where F and IF are complex vector spaces. Denote it for short by (F, W). A pair of subspaces X ⊂ V, Y ⊂ W such that determines a subsystem (X, Y) and a quotient system (V/X, W/Y) (with the induced transformations). The subsystem (X, Y) is of finite codimension in (V, W) if and only if V/X and W / Y are finite-dimensional. It is a direct summand of (V, W) in case there exist supplementary subspaces P of X in F and Q of F in IF such that (P, Q) is a subsystem.


2008 ◽  
Vol 05 (06) ◽  
pp. 989-1032 ◽  
Author(s):  
JESÚS CLEMENTE-GALLARDO ◽  
GIUSEPPE MARMO

In this paper we present a survey of the use of differential geometric formalisms to describe Quantum Mechanics. We analyze Schrödinger framework from this perspective and provide a description of the Weyl–Wigner construction. Finally, after reviewing the basics of the geometric formulation of quantum mechanics, we apply the methods presented to the most interesting cases of finite dimensional Hilbert spaces: those of two, three and four level systems (one qubit, one qutrit and two qubit systems). As a more practical application, we discuss the advantages that the geometric formulation of quantum mechanics can provide us with in the study of situations as the functional independence of entanglement witnesses.


2021 ◽  
Vol Volume 17, Issue 4 ◽  
Author(s):  
Robin Cockett ◽  
Cole Comfort ◽  
Priyaa Srinivasan

Categorical quantum mechanics exploits the dagger compact closed structure of finite dimensional Hilbert spaces, and uses the graphical calculus of string diagrams to facilitate reasoning about finite dimensional processes. A significant portion of quantum physics, however, involves reasoning about infinite dimensional processes, and it is well-known that the category of all Hilbert spaces is not compact closed. Thus, a limitation of using dagger compact closed categories is that one cannot directly accommodate reasoning about infinite dimensional processes. A natural categorical generalization of compact closed categories, in which infinite dimensional spaces can be modelled, is *-autonomous categories and, more generally, linearly distributive categories. This article starts the development of this direction of generalizing categorical quantum mechanics. An important first step is to establish the behaviour of the dagger in these more general settings. Thus, these notes simultaneously develop the categorical semantics of multiplicative dagger linear logic. The notes end with the definition of a mixed unitary category. It is this structure which is subsequently used to extend the key features of categorical quantum mechanics.


Author(s):  
Ignazio Licata ◽  
Leonardo Chiatti

This paper explores an event-based version of quantum mechanics which differs from the commonly accepted one, even though the usual elements of quantum formalism, e.g., the Hilbert space, are maintained. This version introduces as primary element the occurrence of micro-events induced by usual physical (mechanical, electromagnetic and so on) interactions. These micro-events correspond to state reductions and are identified with quantum jumps, already introduced by Bohr in his atomic model and experimentally well established today. Macroscopic bodies are defined as clusters of jumps; the emergence of classicality thus becomes understandable and time honoured paradoxes can be solved. In particular, we discuss the cat paradox in this context. Quantum jumps are described as temporal localizations of physical quantities; if the information associated with these localizations has to be finite, two time scales spontaneously appear: an upper cosmological scale and a lower scale of elementary "particles''. This allows the interpretation of the Bekenstein limit like a particular informational constraint on the manifestation of a micro-event in the cosmos it belongs. The topic appears relevant in relation to recent discussions on possible spatiotemporal constraints on quantum computing.


Sign in / Sign up

Export Citation Format

Share Document