Ribozyme Catalysis of Phosphodiester Bond Isomerization: The Hammerhead RNA and Its Relatives

Author(s):  
William G. Scott
2019 ◽  
Vol 476 (21) ◽  
pp. 3333-3353 ◽  
Author(s):  
Malti Yadav ◽  
Kamalendu Pal ◽  
Udayaditya Sen

Cyclic dinucleotides (CDNs) have emerged as the central molecules that aid bacteria to adapt and thrive in changing environmental conditions. Therefore, tight regulation of intracellular CDN concentration by counteracting the action of dinucleotide cyclases and phosphodiesterases (PDEs) is critical. Here, we demonstrate that a putative stand-alone EAL domain PDE from Vibrio cholerae (VcEAL) is capable to degrade both the second messenger c-di-GMP and hybrid 3′3′-cyclic GMP–AMP (cGAMP). To unveil their degradation mechanism, we have determined high-resolution crystal structures of VcEAL with Ca2+, c-di-GMP-Ca2+, 5′-pGpG-Ca2+ and cGAMP-Ca2+, the latter provides the first structural basis of cGAMP hydrolysis. Structural studies reveal a typical triosephosphate isomerase barrel-fold with substrate c-di-GMP/cGAMP bound in an extended conformation. Highly conserved residues specifically bind the guanine base of c-di-GMP/cGAMP in the G2 site while the semi-conserved nature of residues at the G1 site could act as a specificity determinant. Two metal ions, co-ordinated with six stubbornly conserved residues and two non-bridging scissile phosphate oxygens of c-di-GMP/cGAMP, activate a water molecule for an in-line attack on the phosphodiester bond, supporting two-metal ion-based catalytic mechanism. PDE activity and biofilm assays of several prudently designed mutants collectively demonstrate that VcEAL active site is charge and size optimized. Intriguingly, in VcEAL-5′-pGpG-Ca2+ structure, β5–α5 loop adopts a novel conformation that along with conserved E131 creates a new metal-binding site. This novel conformation along with several subtle changes in the active site designate VcEAL-5′-pGpG-Ca2+ structure quite different from other 5′-pGpG bound structures reported earlier.


2014 ◽  
Vol 12 (3) ◽  
pp. 534-540 ◽  
Author(s):  
Antonella Virgilio ◽  
Veronica Esposito ◽  
Luciano Mayol ◽  
Aldo Galeone

1999 ◽  
Vol 32 (3) ◽  
pp. 241-284 ◽  
Author(s):  
William G. Scott

1. How do ribozymes work? 2412. The hammerhead RNA as a prototype ribozyme 2422.1 RNA enzymes 2422.2 Satellite self-cleaving RNAs 2422.3 Hammerhead RNAs and hammerhead ribozymes 2443. The chemical mechanism of hammerhead RNA self-cleavage 2463.1 Phosphodiester isomerization via an SN2(P) reaction 2473.2 The canonical role of divalent metal ions in the hammerhead ribozyme reaction 2513.3 The hammerhead ribozyme does not actually require metal ions for catalysis 2543.4 Hammerhead RNA enzyme kinetics 2574. Sequence requirements for hammerhead RNA self-cleavage 2604.1 The conserved core, mutagenesis and functional group modifications 2604.2 Ground-state vs. transition-state effects 2615. The three-dimensional structure of the hammerhead ribozyme 2625.1 Enzyme–inhibitor complexes 2625.2 Enzyme–substrate complex in the initial state 2645.3 Hammerhead ribozyme self-cleavage in the crystal 2645.4 The requirement for a conformational change 2655.5 Capture of conformational intermediates using crystallographic freeze-trapping 2665.6 The structure of a hammerhead ribozyme ‘early’ conformational intermediate 2675.7 The structure of a hammerhead ribozyme ‘later’ conformational intermediate 2685.8 Is the conformational change pH dependent? 2695.9 Isolating the structure of the cleavage product 2715.10 Evidence for and against additional large-scale conformation changes 2745.11 NMR spectroscopic studies of the hammerhead ribozyme 2786. Concluding remarks 2807. Acknowledgements 2818. References 2811. How do ribozymes work? 241The discovery that RNA can be an enzyme (Guerrier-Takada et al. 1983; Zaug & Cech, 1986) has created the fundamental question of how RNA enzymes work. Before this discovery, it was generally assumed that proteins were the only biopolymers that had sufficient complexity and chemical heterogeneity to catalyze biochemical reactions. Clearly, RNA can adopt sufficiently complex tertiary structures that make catalysis possible. How does the three- dimensional structure of an RNA endow it with catalytic activity? What structural and functional principles are unique to RNA enzymes (or ribozymes), and what principles are so fundamental that they are shared with protein enzymes?


2016 ◽  
Vol 44 (1) ◽  
pp. 253-259 ◽  
Author(s):  
Thomas M. Livermore ◽  
Cristina Azevedo ◽  
Bernadett Kolozsvari ◽  
Miranda S.C. Wilson ◽  
Adolfo Saiardi

Eukaryotic cells have ubiquitously utilized the myo-inositol backbone to generate a diverse array of signalling molecules. This is achieved by arranging phosphate groups around the six-carbon inositol ring. There is virtually no biological process that does not take advantage of the uniquely variable architecture of phosphorylated inositol. In inositol biology, phosphates are able to form three distinct covalent bonds: phosphoester, phosphodiester and phosphoanhydride bonds, with each providing different properties. The phosphoester bond links phosphate groups to the inositol ring, the variable arrangement of which forms the basis of the signalling capacity of the inositol phosphates. Phosphate groups can also form the structural bridge between myo-inositol and diacylglycerol through the phosphodiester bond. The resulting lipid-bound inositol phosphates, or phosphoinositides, further expand the signalling potential of this family of molecules. Finally, inositol is also notable for its ability to host more phosphates than it has carbons. These unusual organic molecules are commonly referred to as the inositol pyrophosphates (PP-IPs), due to the presence of high-energy phosphoanhydride bonds (pyro- or diphospho-). PP-IPs themselves constitute a varied family of molecules with one or more pyrophosphate moiety/ies located around the inositol. Considering the relationship between phosphate and inositol, it is no surprise that members of the inositol phosphate family also regulate cellular phosphate homoeostasis. Notably, the PP-IPs play a fundamental role in controlling the metabolism of the ancient polymeric form of phosphate, inorganic polyphosphate (polyP). Here we explore the intimate links between phosphate, inositol phosphates and polyP, speculating on the evolution of these relationships.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Yulia Sokurenko ◽  
Vera Ulyanova ◽  
Pavel Zelenikhin ◽  
Alexey Kolpakov ◽  
Dmitriy Blokhin ◽  
...  

Extracellular enzymes of intestinal microbiota are the key agents that affect functional activity of the body as they directly interact with epithelial and immune cells. Several species of theBacillusgenus, likeBacillus pumilus, a common producer of extracellular RNase binase, can populate the intestinal microbiome as a colonizing organism. Without involving metal ions as cofactors, binase depolymerizes RNA by cleaving the 3′,5′-phosphodiester bond and generates 2′,3′-cyclic guanosine phosphates in the first stage of a catalytic reaction. Maintained in the reaction mixture for more than one hour, such messengers can affect the human intestinal microflora and the human body. In the present study, we found that the rate of 2′,3′-cGMP was growing in the presence of transition metals that stabilized the RNA structure. At the same time, transition metal ions only marginally reduced the amount of 2′,3′-cGMP, blocking binase recognition sites of guanine at N7 of nucleophilic purine bases.


2019 ◽  
Vol 47 (14) ◽  
pp. 7147-7162 ◽  
Author(s):  
Adele Williamson ◽  
Hanna-Kirsti S Leiros

Abstract DNA ligases join adjacent 5′ phosphate (5′P) and 3′ hydroxyl (3′OH) termini of double-stranded DNA via a three-step mechanism requiring a nucleotide cofactor and divalent metal ion. Although considerable structural detail is available for the first two steps, less is known about step 3 where the DNA-backbone is joined or about the cation role at this step. We have captured high-resolution structures of an adenosine triphosphate (ATP)-dependent DNA ligase from Prochlorococcus marinus including a Mn-bound pre-ternary ligase–DNA complex poised for phosphodiester bond formation, and a post-ternary intermediate retaining product DNA and partially occupied AMP in the active site. The pre-ternary structure unambiguously identifies the binding site of the catalytic metal ion and confirms both its role in activating the 3′OH terminus for nucleophilic attack on the 5′P group and stabilizing the pentavalent transition state. The post-ternary structure indicates that DNA distortion and most enzyme-AMP contacts remain after phosphodiester bond formation, implying loss of covalent linkage to the DNA drives release of AMP, rather than active site rearrangement. Additionally, comparisons of this cyanobacterial DNA ligase with homologs from bacteria and bacteriophage pose interesting questions about the structural origin of double-strand break joining activity and the evolution of these ATP-dependent DNA ligase enzymes.


Sign in / Sign up

Export Citation Format

Share Document