polymeric form
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 7)

H-INDEX

23
(FIVE YEARS 1)

Processes ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1989
Author(s):  
Akiyoshi Sawabe ◽  
Natsumi Ohnishi ◽  
Sachiko Yoshioka ◽  
Kunihiro Kusudo ◽  
Kenichi Kanno ◽  
...  

Immature persimmons are unripe fruits that are cut off during the persimmon cultivation process and immediately discarded, amounting to an annual fruit loss of approximately 100 to 400 kg per 1000 m2. The purpose of this study was to make effective use of unused resources, namely, immature persimmons, and attempt to use them as food additives. In this study, we studied the Tone Wase (fully astringent persimmon) and Fuyu (fully sweet persimmon) cultivars. As a result, we performed a component analysis of the immature persimmons, isolating 12 compounds, of which two were newly identified. Differences in the components and their contents were found between cultivars and between the peel and flesh. To effectively use immature persimmons as food for the elderly, we searched for active substances that inhibit AGE formation and found that extracts of immature persimmons and isolated compounds showed high activity. In particular, high activity was observed for catechin and its polymeric form, procyanidin. Regarding the inhibition of aroma deterioration, 5 mg/L of gallic acid in octadecane was found to be the optimal condition for the inhibition of citral deterioration. As for antimicrobial activity, we found that extracts at a concentration of 500 mg/L had no antimicrobial effect. Based on these findings, we made a microencapsulation process, and plan to advance to the clinical trial study in future. These findings confirmed the effectiveness of immature persimmons, which are an unused resource, and reveal their potential as a food for the elderly and as a food additive in other food products, which we hope will lead to new industrial innovations.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2142
Author(s):  
Malgorzata Latos-Brozio ◽  
Anna Masek ◽  
Małgorzata Piotrowska

Biomaterials prepared based on raw plant materials are becoming more and more popular due to their specific properties and environmental friendliness. Naringenin is a flavonoid naturally occurring in citrus fruit with antioxidant and pharmacological activity. Polymeric materials based on flavonoids may have favorable properties in comparison to monomeric polyphenols, such as stronger antioxidant and antimicrobial properties. One of the methods of obtaining the polymeric form of flavonoids is polymerization with a cross-linking compound. This method has already been used to obtain poly(quercetin) and poly(rutin) from a flavonol group as well as poly(catechin) from the flavan-3-ol group of flavonoids. However, to date, no polymeric forms of flavanones have been prepared in a cross-linking reaction; the aim of this study was to obtain poly(naringenin) by reaction with a cross-linking compound using glycerol diglycide ether GDE. The degree of conversion of naringenin to poly(naringenin) determined by FTIR spectroscopy was 85%. In addition, the thermal, antioxidant and antimicrobial properties of poly(naringenin) were analyzed. Poly(naringenin) was characterized by greater resistance to oxidation and better thermal stability than monomeric naringenin. Moreover, polymeric naringenin also had a better ability to scavenge ABTS and DPPH free-radicals. In contrast to monomeric form, poly(naringenin) had antimicrobial activity against Candida albicans. Polymeric biomaterial based on naringenin could potentially be used as a natural stabilizer and antimicrobial additive for polymer compositions, as well as pro-ecological materials.


2021 ◽  
Vol 118 (14) ◽  
pp. e2022933118
Author(s):  
Xialian Wu ◽  
Yeyang Ma ◽  
Kun Zhao ◽  
Jing Zhang ◽  
Yunpeng Sun ◽  
...  

Receptor-interacting protein kinases 3 (RIPK3), a central node in necroptosis, polymerizes in response to the upstream signals and then activates its downstream mediator to induce cell death. The active polymeric form of RIPK3 has been indicated as the form of amyloid fibrils assembled via its RIP homotypic interaction motif (RHIM). In this study, we combine cryogenic electron microscopy and solid-state NMR to determine the amyloid fibril structure of RIPK3 RHIM-containing C-terminal domain (CTD). The structure reveals a single protofilament composed of the RHIM domain. RHIM forms three β-strands (referred to as strands 1 through 3) folding into an S shape, a distinct fold from that in complex with RIPK1. The consensus tetrapeptide VQVG of RHIM forms strand 2, which zips up strands 1 and 3 via heterozipper-like interfaces. Notably, the RIPK3-CTD fibril, as a physiological fibril, exhibits distinctive assembly compared with pathological fibrils. It has an exceptionally small fibril core and twists in both handedness with the smallest pitch known so far. These traits may contribute to a favorable spatial arrangement of RIPK3 kinase domain for efficient phosphorylation.


Biomolecules ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 50
Author(s):  
Malgorzata Latos-Brozio ◽  
Anna Masek ◽  
Małgorzata Piotrowska

(+)-Catechin is a flavonoid with valuable antioxidant and antimicrobial properties, found in significant amounts in green tea leaves. Polymeric forms of catechin have been obtained by enzymatic reaction, photopolymerization, and polycondensation in designed processes. However, so far, poly(catechin) has not been received in the cross-linking reaction. Reactions with the cross-linking compound allowed for the preparation of antibacterial and antioxidant materials based on quercetin and rutin. The aim of the research was to obtain, for the first time, poly(catechin) by reaction with glycerol diglycide ether cross-linking compound. The polymeric form of (+)-catechin was confirmed using FTIR and UV-Vis spectroscopy. In addition, thermal analysis (TG and DSC) of the polymeric catechin was performed. The antioxidant and antibacterial activity of poly (flavonoid) was also analyzed. Poly(catechin) was characterized by greater resistance to oxidation, better thermal stability and the ability to reduce transition metal ions than (+)-catechin. In addition, the polymeric catechin had an antimicrobial activity against Staphylococcus aureus stronger than the monomer, and an antifungal activity against Aspergillus niger comparable to that of (+)-catechin. The material made on the basis of (+)-catechin can potentially be used as a pro-ecological stabilizer and functional additive, e.g., for polymeric materials as well as dressing materials in medicine.


2020 ◽  
Vol 172 ◽  
pp. 114673
Author(s):  
Shin Yiing Kee ◽  
John Lin Onn Wong ◽  
Yamuna Munusamy ◽  
Kok Seng Ong ◽  
Yang Chuan Choong

Biomolecules ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 175 ◽  
Author(s):  
Jackson Fink ◽  
Heather Pathak ◽  
John Smith ◽  
Cindy Achat-Mendes ◽  
Robert L. Haining

Neuromelanin, the polymeric form of dopamine which accumulates in aging neuronal tissue, is increasingly recognized as a functional and critical component of a healthy and active adult human brain. Notorious in plant and insect literature for their ability to bind and retain amines for long periods of time, catecholamine polymers known colloquially as ‘melanins’ are nevertheless curiously absent from most textbooks regarding biochemistry, neuroscience, and evolution. Recent research has brought attention to the brain pigment due to its possible role in neurodegeneration. This linkage is best illustrated by Parkinson’s disease, which is characterized by the loss of pigmented dopaminergic neurons and the ‘white brain’ pathological state. As such, the ability to determine the binding affinity of neurotoxic agents, as well as any potential specific endogenous ligands to neuromelanin are of interest and potential value. Neuromelanin has been shown to have saturable binding interactions with nicotine as monitored by a fluorimeter. This interaction provides a signal to allow for a competition-binding assay with target molecules which do not themselves produce signal. The current report establishes the viability of this competition assay toward three compounds with central relevance to Parkinson’s disease. The Kd of binding toward neuromelanin by methyl-phenyl-pyridinium ion (MPP+), dopamine, and 6-hydroxydopamine were found to be 1 mM, 0.05 mM, and 0.1 mM, respectively in the current study. In addition, we demonstrate that 6-hydroxydopamine polymerizes to form neuromelanin granules in cultured dopaminergic neurons that treated with 2,4,5-trihydroxy-l-phenylalanine. Immunohistochemical analysis using fluor-tagged anti-dopamine antibodies suggests that the incorporation of 6-hydroxydopamine (following internalization and decarboxylation analogous to levodopa and dopamine) alters the localized distribution of bound dopamine in these cells.


2018 ◽  
Vol 115 (45) ◽  
pp. 11442-11447 ◽  
Author(s):  
David Saintillan ◽  
Michael J. Shelley ◽  
Alexandra Zidovska

The 3D spatiotemporal organization of the human genome inside the cell nucleus remains a major open question in cellular biology. In the time between two cell divisions, chromatin—the functional form of DNA in cells—fills the nucleus in its uncondensed polymeric form. Recent in vivo imaging experiments reveal that the chromatin moves coherently, having displacements with long-ranged correlations on the scale of micrometers and lasting for seconds. To elucidate the mechanism(s) behind these motions, we develop a coarse-grained active polymer model where chromatin is represented as a confined flexible chain acted upon by molecular motors that drive fluid flows by exerting dipolar forces on the system. Numerical simulations of this model account for steric and hydrodynamic interactions as well as internal chain mechanics. These demonstrate that coherent motions emerge in systems involving extensile dipoles and are accompanied by large-scale chain reconfigurations and nematic ordering. Comparisons with experiments show good qualitative agreement and support the hypothesis that self-organizing long-ranged hydrodynamic couplings between chromatin-associated active motor proteins are responsible for the observed coherent dynamics.


Author(s):  
A.I. Muraveva ◽  
E.A. Vorontsov ◽  
S.L. Kuznetsov ◽  
I.A. Tubasheva ◽  
N.V. Gukasova
Keyword(s):  

2018 ◽  
Author(s):  
David Saintillan ◽  
Michael J. Shelley ◽  
Alexandra Zidovska

AbstractThe 3D spatiotemporal organization of the human genome inside the cell nucleus remains a major open question in cellular biology. In the time between two cell divisions, chromatin – the functional form of DNA in cells – fills the nucleus in its uncondensed polymeric form. Recent in-vivo imaging experiments reveal that the chromatin moves coherently, having displacements with long-ranged correlations on the scale of microns and lasting for seconds. To elucidate the mechanism(s) behind these motions, we develop a novel coarse-grained active-polymer model where chromatin is represented as a confined flexible chain acted upon by molecular motors, which perform work by exerting dipolar forces on the system. Numerical simulations of this model account for steric and hydrodynamic interactions as well as internal chain mechanics. These demonstrate that coherent motions emerge in systems involving extensile dipoles and are accompanied by large-scale chain reconfigurations and nematic ordering. Comparisons with experiments show good qualitative agreement and support the hypothesis that self-organizing long-ranged hydrodynamic couplings between chromatin-associated active motor proteins are responsible for the observed coherent dynamics.


Sign in / Sign up

Export Citation Format

Share Document