ICA Based Super-Resolution Face Hallucination and Recognition

Author(s):  
Hua Yan ◽  
Ju Liu ◽  
Jiande Sun ◽  
Xinghua Sun
2020 ◽  
Vol 29 ◽  
pp. 2150-2165 ◽  
Author(s):  
Klemen Grm ◽  
Walter J. Scheirer ◽  
Vitomir Struc

2020 ◽  
Vol 10 (2) ◽  
pp. 718 ◽  
Author(s):  
K. Lakshminarayanan ◽  
R. Santhana Krishnan ◽  
E. Golden Julie ◽  
Y. Harold Robinson ◽  
Raghvendra Kumar ◽  
...  

This paper proposed and verified a new integrated approach based on the iterative super-resolution algorithm and expectation-maximization for face hallucination, which is a process of converting a low-resolution face image to a high-resolution image. The current sparse representation for super resolving generic image patches is not suitable for global face images due to its lower accuracy and time-consumption. To solve this, in the new method, training global face sparse representation was used to reconstruct images with misalignment variations after the local geometric co-occurrence matrix. In the testing phase, we proposed a hybrid method, which is a combination of the sparse global representation and the local linear regression using the Expectation Maximization (EM) algorithm. Therefore, this work recovered the high-resolution image of a corresponding low-resolution image. Experimental validation suggested improvement of the overall accuracy of the proposed method with fast identification of high-resolution face images without misalignment.


2021 ◽  
Author(s):  
Ali Abbasi ◽  
Mohammad Rahmati

Over the past few decades, numerous attempts have been made to address the problem of recovering a high-resolution (HR) facial image from its corresponding low-resolution (LR) counterpart, a task commonly referred to as face hallucination. Despite the impressive performance achieved by position-patch and deep learning-based methods, most of these techniques are still unable to recover identity-specific features of faces. The former group of algorithms often produces blurry and oversmoothed outputs particularly in the presence of higher levels of degradation, whereas the latter generates faces which sometimes by no means resemble the individuals in the input images. In this paper, a novel face super-resolution approach will be introduced, in which the hallucinated face is forced to lie in a subspace spanned by the available training faces. Therefore, in contrast to the majority of existing face hallucination techniques and thanks to this <i>face subspace prior</i>, the reconstruction is performed in favor of recovering person-specific facial features, rather than merely increasing image quantitative scores. Furthermore, inspired by recent advances in the area of 3D face reconstruction, an efficient 3D dictionary alignment scheme is also presented, through which the algorithm becomes capable of dealing with low-resolution faces taken in uncontrolled conditions. In extensive experiments carried out on several well-known face datasets, the proposed algorithm shows remarkable performance by generating detailed and close to ground truth results which outperform the state-of-the-art face hallucination algorithms by significant margins both in quantitative and qualitative evaluations.


Author(s):  
Junjun Jiang ◽  
Yi Yu ◽  
Jinhui Hu ◽  
Suhua Tang ◽  
Jiayi Ma

Most of the current face hallucination methods, whether they are shallow learning-based or deep learning-based, all try to learn a relationship model between Low-Resolution (LR) and High-Resolution (HR) spaces with the help of a training set. They mainly focus on modeling image prior through either model-based optimization or discriminative inference learning. However, when the input LR face is tiny, the learned prior knowledge is no longer effective and their performance will drop sharply. To solve this problem, in this paper we propose a general face hallucination method that can integrate model-based optimization and discriminative inference. In particular, to exploit the model based prior, the Deep Convolutional Neural Networks (CNN) denoiser prior is plugged into the super-resolution optimization model with the aid of image-adaptive Laplacian regularization. Additionally, we further develop a high-frequency details compensation method by dividing the face image to facial components and performing face hallucination in a multi-layer neighbor embedding manner. Experiments demonstrate that the proposed method can achieve promising super-resolution results for tiny input LR faces.


2021 ◽  
Author(s):  
Ali Abbasi ◽  
Mohammad Rahmati

Over the past few decades, numerous attempts have been made to address the problem of recovering a high-resolution (HR) facial image from its corresponding low-resolution (LR) counterpart, a task commonly referred to as face hallucination. Despite the impressive performance achieved by position-patch and deep learning-based methods, most of these techniques are still unable to recover identity-specific features of faces. The former group of algorithms often produces blurry and oversmoothed outputs particularly in the presence of higher levels of degradation, whereas the latter generates faces which sometimes by no means resemble the individuals in the input images. In this paper, a novel face super-resolution approach will be introduced, in which the hallucinated face is forced to lie in a subspace spanned by the available training faces. Therefore, in contrast to the majority of existing face hallucination techniques and thanks to this <i>face subspace prior</i>, the reconstruction is performed in favor of recovering person-specific facial features, rather than merely increasing image quantitative scores. Furthermore, inspired by recent advances in the area of 3D face reconstruction, an efficient 3D dictionary alignment scheme is also presented, through which the algorithm becomes capable of dealing with low-resolution faces taken in uncontrolled conditions. In extensive experiments carried out on several well-known face datasets, the proposed algorithm shows remarkable performance by generating detailed and close to ground truth results which outperform the state-of-the-art face hallucination algorithms by significant margins both in quantitative and qualitative evaluations.


Acta Naturae ◽  
2017 ◽  
Vol 9 (4) ◽  
pp. 42-51
Author(s):  
S. S. Ryabichko ◽  
◽  
A. N. Ibragimov ◽  
L. A. Lebedeva ◽  
E. N. Kozlov ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document