Gemological Institute of America Color-Grading System

2009 ◽  
pp. 376-376
Keyword(s):  
2007 ◽  
Vol 20 (5) ◽  
pp. 324-334 ◽  
Author(s):  
KATSUKI OKADA ◽  
YASUNORI UEDA ◽  
JOTA OYABU ◽  
NOBUYUKI OGASAWARA ◽  
ATSUSHI HIRAYAMA ◽  
...  

2020 ◽  
Author(s):  
William J. Howitz ◽  
Kate J. McKnelly ◽  
Renee Link

<p>Large, multi-section laboratory courses are particularly challenging when managing grading with as many as 35 teaching assistants (TAs). Traditional grading systems using point-based rubrics lead to significant variations in how individual TAs grade, which necessitates the use of curving across laboratory sections. Final grade uncertainty perpetuates student anxieties and disincentivizes a collaborative learning environment, so we adopted an alternative grading system, called specifications grading. In this system each student knows exactly what level of proficiency they must demonstrate to earn their desired course grade. Higher grades require demonstrating mastery of skills and content at defined higher levels. Each students’ grade is solely dependent on the work they produce rather than the performance of other students. We piloted specifications grading in the smaller, third quarter course of the lower division organic chemistry laboratory series held during a summer term. Open-ended questions were chosen to gather student and TA perceptions of the new grading system. TAs felt that the new grading system reduced the weekly grading time because it was less ambiguous. Responses from students about the nature of the grading system were mixed. Their perceptions indicate that initial buy-in and multiple reminders about the bigger picture of the grading system will be essential to the success of this grading system on a larger scale.</p>


2020 ◽  
Vol 25 (1) ◽  
pp. 37-42 ◽  
Author(s):  
Ros Whelan ◽  
Eric Prince ◽  
David M. Mirsky ◽  
Robert Naftel ◽  
Aashim Bhatia ◽  
...  

OBJECTIVEPediatric adamantinomatous craniopharyngiomas (ACPs) are histologically benign brain tumors that confer significant neuroendocrine morbidity. Previous studies have demonstrated that injury to the hypothalamus is associated with worsened quality of life and a shorter lifespan. This insight helps many surgeons define the goals of surgery for patients with ACP. Puget and colleagues proposed a 3-tiered preoperative and postoperative grading system based on the degree of hypothalamic involvement identified on MRI. In a prospective cohort from their institution, the authors found that use of the system to guide operative goals was associated with decreased morbidity. To date, however, the Puget system has not been externally validated. Here, the authors present an interrater reliability study that assesses the generalizability of this system for surgeons planning initial operative intervention for children with craniopharyngiomas.METHODSA panel of 6 experts, consisting of pediatric neurosurgeons and pediatric neuroradiologists, graded 30 preoperative and postoperative MRI scans according to the Puget system. Interrater reliability was calculated using Fleiss’ κ and Krippendorff’s α statistics.RESULTSInterrater reliability in the preoperative context demonstrated moderate agreement (κ = 0.50, α = 0.51). Interrater reliability in the postoperative context was 0.27 for both methods of statistical evaluation.CONCLUSIONSInterrater reliability for the system as defined is moderate. Slight refinements of the Puget MRI grading system, such as collapsing the 3 grades into 2, may improve its reliability, making the system more generalizable.


Sign in / Sign up

Export Citation Format

Share Document