Developing and Implementing a Specifications Grading System in an Organic Chemistry Laboratory Course

Author(s):  
William J. Howitz ◽  
Kate J. McKnelly ◽  
Renee Link

<p>Large, multi-section laboratory courses are particularly challenging when managing grading with as many as 35 teaching assistants (TAs). Traditional grading systems using point-based rubrics lead to significant variations in how individual TAs grade, which necessitates the use of curving across laboratory sections. Final grade uncertainty perpetuates student anxieties and disincentivizes a collaborative learning environment, so we adopted an alternative grading system, called specifications grading. In this system each student knows exactly what level of proficiency they must demonstrate to earn their desired course grade. Higher grades require demonstrating mastery of skills and content at defined higher levels. Each students’ grade is solely dependent on the work they produce rather than the performance of other students. We piloted specifications grading in the smaller, third quarter course of the lower division organic chemistry laboratory series held during a summer term. Open-ended questions were chosen to gather student and TA perceptions of the new grading system. TAs felt that the new grading system reduced the weekly grading time because it was less ambiguous. Responses from students about the nature of the grading system were mixed. Their perceptions indicate that initial buy-in and multiple reminders about the bigger picture of the grading system will be essential to the success of this grading system on a larger scale.</p>

2020 ◽  
Author(s):  
William J. Howitz ◽  
Kate J. McKnelly ◽  
Renee Link

<p>Large, multi-section laboratory courses are particularly challenging when managing grading with as many as 35 teaching assistants (TAs). Traditional grading systems using point-based rubrics lead to significant variations in how individual TAs grade, which necessitates the use of curving across laboratory sections. Final grade uncertainty perpetuates student anxieties and disincentivizes a collaborative learning environment, so we adopted an alternative grading system, called specifications grading. In this system each student knows exactly what level of proficiency they must demonstrate to earn their desired course grade. Higher grades require demonstrating mastery of skills and content at defined higher levels. Each students’ grade is solely dependent on the work they produce rather than the performance of other students. We piloted specifications grading in the smaller, third quarter course of the lower division organic chemistry laboratory series held during a summer term. Open-ended questions were chosen to gather student and TA perceptions of the new grading system. TAs felt that the new grading system reduced the weekly grading time because it was less ambiguous. Responses from students about the nature of the grading system were mixed. Their perceptions indicate that initial buy-in and multiple reminders about the bigger picture of the grading system will be essential to the success of this grading system on a larger scale.</p>


2020 ◽  
Author(s):  
William J. Howitz ◽  
Kate J. McKnelly ◽  
Renee Link

<p>Large, multi-section laboratory courses are particularly challenging when managing grading with as many as 35 teaching assistants (TAs). Traditional grading systems using point-based rubrics lead to significant variations in how individual TAs grade, which necessitates the use of curving across laboratory sections. Final grade uncertainty perpetuates student anxieties and disincentivizes a collaborative learning environment, so we adopted an alternative grading system, called specifications grading. In this system each student knows exactly what level of proficiency they must demonstrate to earn their desired course grade. Higher grades require demonstrating mastery of skills and content at defined higher levels. Each students’ grade is solely dependent on the work they produce rather than the performance of other students. We piloted specifications grading in the smaller, third quarter course of the lower division organic chemistry laboratory series held during a summer term. Open-ended questions were chosen to gather student and TA perceptions of the new grading system. TAs felt that the new grading system reduced the weekly grading time because it was less ambiguous. Responses from students about the nature of the grading system were mixed. Their perceptions indicate that initial buy-in and multiple reminders about the bigger picture of the grading system will be essential to the success of this grading system on a larger scale.</p>


2020 ◽  
Author(s):  
William J. Howitz ◽  
Kate J. McKnelly ◽  
Renee Link

<p>Large, multi-section laboratory courses are particularly challenging when managing grading with as many as 35 teaching assistants (TAs). Traditional grading systems using point-based rubrics lead to significant variations in how individual TAs grade, which necessitates the use of curving across laboratory sections. Final grade uncertainty perpetuates student anxieties and disincentivizes a collaborative learning environment, so we adopted an alternative grading system, called specifications grading. In this system each student knows exactly what level of proficiency they must demonstrate to earn their desired course grade. Higher grades require demonstrating mastery of skills and content at defined higher levels. Each students’ grade is solely dependent on the work they produce rather than the performance of other students. We piloted specifications grading in the smaller, third quarter course of the lower division organic chemistry laboratory series held during a summer term. Open-ended questions were chosen to gather student and TA perceptions of the new grading system. TAs felt that the new grading system reduced the weekly grading time because it was less ambiguous. Responses from students about the nature of the grading system were mixed. Their perceptions indicate that initial buy-in and multiple reminders about the bigger picture of the grading system will be essential to the success of this grading system on a larger scale.</p>


2017 ◽  
Vol 2 (2) ◽  
Author(s):  
Matthew J. Mio

Abstract Many logistic and instructional changes followed the incorporation of the 12 principles of green chemistry into organic chemistry laboratory courses at the University of Detroit Mercy. Over the last decade, institutional limitations have been turned into green chemical strengths in many areas, including integration of atom economy metrics into learning outcomes, replacing overly toxic equipment and reagents, and modifying matters of reaction scale and type.


2017 ◽  
Vol 18 (4) ◽  
pp. 811-824 ◽  
Author(s):  
Nikita L. Burrows ◽  
Montana K. Nowak ◽  
Suazette R. Mooring

Students can perceive the laboratory environment in a variety of ways that can affect what they take away from the laboratory course. This qualitative study characterizes undergraduate students’ perspectives of a project-based Organic Chemistry laboratory using the theoretical framework of phenomenography. Eighteen participants were interviewed in a semi-structured format to collect their perspectives of the Organic Chemistry lab. Eight qualitatively different ways in which students perceived the lab were uncovered and an outcome space was derived. The findings of this work are intended to inform the design of the undergraduate laboratory curriculum in chemistry that facilitate better student learning. Implications and suggestions for design of laboratory courses based on the results of this work are also presented.


2008 ◽  
Vol 85 (12) ◽  
pp. 1644 ◽  
Author(s):  
Kate J. Graham ◽  
Brian J. Johnson ◽  
T. Nicholas Jones ◽  
Edward J. McIntee ◽  
Chris P. Schaller

Sign in / Sign up

Export Citation Format

Share Document