2021 ◽  
Vol 141 ◽  
pp. 145-159
Author(s):  
Ryan Burt ◽  
Nina N. Thigpen ◽  
Andreas Keil ◽  
Jose C. Principe

Author(s):  
Christian Wolf ◽  
Markus Lappe

AbstractHumans and other primates are equipped with a foveated visual system. As a consequence, we reorient our fovea to objects and targets in the visual field that are conspicuous or that we consider relevant or worth looking at. These reorientations are achieved by means of saccadic eye movements. Where we saccade to depends on various low-level factors such as a targets’ luminance but also crucially on high-level factors like the expected reward or a targets’ relevance for perception and subsequent behavior. Here, we review recent findings how the control of saccadic eye movements is influenced by higher-level cognitive processes. We first describe the pathways by which cognitive contributions can influence the neural oculomotor circuit. Second, we summarize what saccade parameters reveal about cognitive mechanisms, particularly saccade latencies, saccade kinematics and changes in saccade gain. Finally, we review findings on what renders a saccade target valuable, as reflected in oculomotor behavior. We emphasize that foveal vision of the target after the saccade can constitute an internal reward for the visual system and that this is reflected in oculomotor dynamics that serve to quickly and accurately provide detailed foveal vision of relevant targets in the visual field.


1970 ◽  
Vol 10 (12) ◽  
pp. 1477-1481 ◽  
Author(s):  
R. Tittarelli ◽  
F.H.C. Marriott

1978 ◽  
Vol 30 (3) ◽  
pp. 147-155 ◽  
Author(s):  
T. Inui ◽  
M. Kawato ◽  
R. Suzuki
Keyword(s):  

1976 ◽  
Vol 19 (6) ◽  
pp. 518-524 ◽  
Author(s):  
Bruce A. Ambler ◽  
Dianne L. Finklea

The curve relating the smallest perceptible intensity of a blue test stimulus with the intensity of an orange conditioning field against which it is viewed shows a characteristic division into low- and high-intensity components, indicating the operation of two mechanisms of cone vision at the fovea. The justification for calling these ‘blue’ and ‘green’ mechanisms is taken from an earlier investigation (Stiles 1939). While most subjects show this division clearly, for some the low-intensity component is masked by the intrusion of rod vision. The correctness of this view is established by measurements made while the eye is recovering from an intense light adaptation. The individual variations of the sensitivities of the ‘green’ and ‘blue’ mechanisms in twenty subjects are assessed. Further evidence is obtained of an anomalously low threshold for the ‘blue’ mechanisms at very high conditioning fields of orange light.


1976 ◽  
Vol 16 (6) ◽  
pp. 573-579 ◽  
Author(s):  
Theodore E. Cohn

2020 ◽  
Vol 117 (20) ◽  
pp. 11178-11183
Author(s):  
Natalya Shelchkova ◽  
Martina Poletti

It is known that attention shifts prior to a saccade to start processing the saccade target before it lands in the foveola, the high-resolution region of the retina. Yet, once the target is foveated, microsaccades, tiny saccades maintaining the fixated object within the fovea, continue to occur. What is the link between these eye movements and attention? There is growing evidence that these eye movements are associated with covert shifts of attention in the visual periphery, when the attended stimuli are presented far from the center of gaze. Yet, microsaccades are primarily used to explore complex foveal stimuli and to optimize fine spatial vision in the foveola, suggesting that the influences of microsaccades on attention may predominantly impact vision at this scale. To address this question we tracked gaze position with high precision and briefly presented high-acuity stimuli at predefined foveal locations right before microsaccade execution. Our results show that visual discrimination changes prior to microsaccade onset. An enhancement occurs at the microsaccade target location. This modulation is highly selective and it is coupled with a drastic impairment at the opposite foveal location, just a few arcminutes away. This effect is strongest when stimuli are presented closer to the eye movement onset time. These findings reveal that the link between attention and microsaccades is deeper than previously thought, exerting its strongest effects within the foveola. As a result, during fixation, foveal vision is constantly being reshaped both in space and in time with the occurrence of microsaccades.


Sign in / Sign up

Export Citation Format

Share Document