Application Server Aging Prediction Model Based on Wavelet Network with Adaptive Particle Swarm Optimization Algorithm

Author(s):  
Meng Hai Ning ◽  
Qi Yong ◽  
Hou Di ◽  
Pei Lu Xia ◽  
Chen Ying
2010 ◽  
Vol 118-120 ◽  
pp. 541-545
Author(s):  
Qin Ming Liu ◽  
Ming Dong

This paper explores the grey model based PSO (particle swarm optimization) algorithm for anti-cauterization reliability design of underground pipelines. First, depending on underground pipelines’ corrosion status, failure modes such as leakage and breakage are studied. Then, a grey GM(1,1) model based PSO algorithm is employed to the reliability design of the pipelines. One important advantage of the proposed algorithm is that only fewer data is used for reliability design. Finally, applications are used to illustrate the effectiveness and efficiency of the proposed approach.


2013 ◽  
Vol 760-762 ◽  
pp. 2194-2198 ◽  
Author(s):  
Xue Mei Wang ◽  
Yi Zhuo Guo ◽  
Gui Jun Liu

Adaptive Particle Swarm Optimization algorithm with mutation operation based on K-means is proposed in this paper, this algorithm Combined the local searching optimization ability of K-means with the gobal searching optimization ability of Particle Swarm Optimization, the algorithm self-adaptively adjusted inertia weight according to fitness variance of population. Mutation operation was peocessed for the poor performative particle in population. The results showed that the algorithm had solved the poblems of slow convergence speed of traditional Particle Swarm Optimization algorithm and easy falling into the local optimum of K-Means, and more effectively improved clustering quality.


Sign in / Sign up

Export Citation Format

Share Document