Trajectory Data Models

2008 ◽  
pp. 123-150 ◽  
Author(s):  
J. Macedo ◽  
C. Vangenot ◽  
W. Othman ◽  
N. Pelekis ◽  
E. Frentzos ◽  
...  
Keyword(s):  
Author(s):  
Berkay Aydin ◽  
Vijay Akkineni ◽  
Rafal A Angryk

With the ever-growing nature of spatiotemporal data, it is inevitable to use non-relational and distributed database systems for storing massive spatiotemporal datasets. In this chapter, the important aspects of non-relational (NoSQL) databases for storing large-scale spatiotemporal trajectory data are investigated. Mainly, two data storage schemata are proposed for storing trajectories, which are called traditional and partitioned data models. Additionally spatiotemporal and non-spatiotemporal indexing structures are designed for efficiently retrieving data under different usage scenarios. The results of the experiments exhibit the advantages of utilizing data models and indexing structures for various query types.


CICTP 2020 ◽  
2020 ◽  
Author(s):  
Zuyao Zhang ◽  
Li Tang ◽  
Yifeng Wang ◽  
Xuejun Zhang

Informatica ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Pengfei HAO ◽  
Chunlong YAO ◽  
Qingbin MENG ◽  
Xiaoqiang YU ◽  
Xu LI

2020 ◽  
Author(s):  
Jiawei Peng ◽  
Yu Xie ◽  
Deping Hu ◽  
Zhenggang Lan

The system-plus-bath model is an important tool to understand nonadiabatic dynamics for large molecular systems. The understanding of the collective motion of a huge number of bath modes is essential to reveal their key roles in the overall dynamics. We apply the principal component analysis (PCA) to investigate the bath motion based on the massive data generated from the MM-SQC (symmetrical quasi-classical dynamics method based on the Meyer-Miller mapping Hamiltonian) nonadiabatic dynamics of the excited-state energy transfer dynamics of Frenkel-exciton model. The PCA method clearly clarifies that two types of bath modes, which either display the strong vibronic couplings or have the frequencies close to electronic transition, are very important to the nonadiabatic dynamics. These observations are fully consistent with the physical insights. This conclusion is obtained purely based on the PCA understanding of the trajectory data, without the large involvement of pre-defined physical knowledge. The results show that the PCA approach, one of the simplest unsupervised machine learning methods, is very powerful to analyze the complicated nonadiabatic dynamics in condensed phase involving many degrees of freedom.


Author(s):  
С.И. Рябухин

Процессные модели предметной области широко применяются при проектировании баз данных, а именно в ходе концептуального моделирования данных. Предлагается решение проблемы неоднозначности преобразования процессных доменных моделей типа SADT в концептуальные модели данных. Domain process models are widely used in database design, namely in conceptual data modeling. The solution of the problem of ambiguity of transformation of process domain models of the SADT type into conceptual data models is proposed.


2013 ◽  
Vol 33 (6) ◽  
pp. 1604-1607
Author(s):  
Guang YANG ◽  
Lei ZHANG ◽  
Fan LI

Sign in / Sign up

Export Citation Format

Share Document