scholarly journals Enhanced Local Texture Feature Sets for Face Recognition Under Difficult Lighting Conditions

Author(s):  
Xiaoyang Tan ◽  
Bill Triggs
Author(s):  
Jun Dong ◽  
Xue Yuan ◽  
Fanlun Xiong

In this paper, a novel facial-patch based recognition framework is proposed to deal with the problem of face recognition (FR) on the serious illumination condition. First, a novel lighting equilibrium distribution maps (LEDM) for illumination normalization is proposed. In LEDM, an image is analyzed in logarithm domain with wavelet transform, and the approximation coefficients of the image are mapped according to a reference-illumination map in order to normalize the distribution of illumination energy due to different lighting effects. Meanwhile, the detail coefficients are enhanced to achieve detail information emphasis. The LEDM is obtained by blurring the distances between the test image and the reference illumination map in the logarithm domain, which may express the entire distribution of illumination variations. Then, a facial-patch based framework and a credit degree based facial patches synthesizing algorithm are proposed. Each normalized face images is divided into several stacked patches. And, all patches are individually classified, then each patch from the test image casts a vote toward the parent image classification. A novel credit degree map is established based on the LEDM, which is deciding a credit degree for each facial patch. The main idea of credit degree map construction is the over-and under-illuminated regions should be assigned lower credit degree than well-illuminated regions. Finally, results are obtained by the credit degree based facial patches synthesizing. The proposed method provides state-of-the-art performance on three data sets that are widely used for testing FR under different illumination conditions: Extended Yale-B, CAS-PEAL-R1, and CMUPIE. Experimental results show that our FR frame outperforms several existing illumination compensation methods.


2012 ◽  
Vol 21 (3) ◽  
pp. 1366-1380 ◽  
Author(s):  
Jae Young Choi ◽  
Yong Man Ro ◽  
K. N. Plataniotis

Symmetry ◽  
2020 ◽  
Vol 12 (2) ◽  
pp. 307 ◽  
Author(s):  
Ngo Tung Son ◽  
Bui Ngoc Anh ◽  
Tran Quy Ban ◽  
Le Phuong Chi ◽  
Bui Dinh Chien ◽  
...  

Face recognition (FR) has received considerable attention in the field of security, especially in the use of closed-circuit television (CCTV) cameras in security monitoring. Although significant advances in the field of computer vision are made, advanced face recognition systems provide satisfactory performance only in controlled conditions. They deteriorate significantly in the face of real-world scenarios such as lighting conditions, motion blur, camera resolution, etc. This article shows how we design, implement, and conduct the empirical comparisons of machine learning open libraries in building attendance taking (AT) support systems using indoor security cameras called ATSS. Our trial system was deployed to record the appearances of 120 students in five classes who study on the third floor of FPT Polytechnic College building. Our design allows for flexible system scaling, and it is not only usable for a school but a generic attendance system with CCTV. The measurement results show that the accuracy is suitable for many different environments.


Sign in / Sign up

Export Citation Format

Share Document