Optimal Cycle Scheme of Direct Cycle Supercritical CO2 Gas Turbine for Nuclear Power Generation Systems

Author(s):  
Yasushi Muto ◽  
Yasuyoshi Kato
2019 ◽  
Vol 75 (8) ◽  
pp. 862-872
Author(s):  
Shintaro Ishiyama ◽  
Teruya Tanaka ◽  
Akio Sagara ◽  
Hirotaka Chikaraishi

Author(s):  
Gulian A. K. Crommelin ◽  
Walter F. Crommelin

Gas turbines in combination with a nuclear heat source have been subject for study for some years. This paper is a logical follow up on previous papers regarding small scale nuclear power generation using gas turbines with a well-proven, inherently safe nuclear heat source. In the Netherlands the NEREUS project has been working on this concept since 1993. The acronym NEREUS describes very well the goals of this project. (Ref 1, 2, 3, 4, 5). NEREUS stands for: a Natural safe, Efficient, Reactor, Easy to operate, Ultimately simple and Small. Current studies focus on the gas turbine part of the installation. After three years of studying the possibilities of the closed cycle helium gas turbine, the NEREUS project returned in 2000 to its original thought of using an existing open-cycle gas turbine or components of such an engine, as energy conversion unit. The paper starts with an introduction on why nuclear power should get more attention, basically explaining “the reasons why” of the NEREUS project. Secondly the paper gives an overview of the main characteristics of the nuclear heat source. Thirdly the paper will discuss the current study to determine the specifications of an open-cycle gas turbine for the NEREUS installation. Attention is given to the way such an open-cycle gas turbine can be controlled. The nuclear heat source is controlled by the laws of physics and it is not recommended to intervene under any circumstances with this very important safety feature.


Author(s):  
Daniel R. E. Ewim ◽  
Stephen S. Oyewobi ◽  
Michael O. Dioha ◽  
Chibuike E. Daraojimba ◽  
Suzzie O. Oyakhire ◽  
...  

Author(s):  
Mark A. Paisley ◽  
Donald Anson

The Biomass Power Program of the US Department of Energy (DOE) has as a major goal the development of cost-competitive technologies for the production of power from renewable biomass crops. The gasification of biomass provides the potential to meet his goal by efficiently and economically producing a renewable source of a clean gaseous fuel suitable for use in high efficiency gas turbines. This paper discusses the development and first commercial demonstration of the Battelle high-throughput gasification process for power generation systems. Projected process economics are presented along with a description of current experimental operations coupling a gas turbine power generation system to the research scale gasifier and the process scaleup activities in Burlington, Vermont.


Sign in / Sign up

Export Citation Format

Share Document