renewable biomass
Recently Published Documents


TOTAL DOCUMENTS

286
(FIVE YEARS 139)

H-INDEX

35
(FIVE YEARS 8)

2022 ◽  
Vol 3 ◽  
Author(s):  
Gina Fioroni ◽  
Rui Katahira ◽  
Stefanie Van Wychen ◽  
Steven M. Rowland ◽  
Earl D. Christensen ◽  
...  

In the context of decarbonizing the economy, the utilization of biologically sourced feedstocks to produce replacements for petroleum-derived materials is becoming more urgent. Improving renewable biomass production and utilization is imperative for commercializing future biorefineries. Algae-derived biomass is a particularly promising feedstock thanks to its attractive oil content and composition; specifically, the high-value products in the unsaponifiable lipids have not been included in a conversion process. Here we demonstrate surfactant synthesis from a complex oil fraction as the hydrophobic donor moieties, yielding products that are similar to commercially available surfactants such as the linear alkyl benzene sulfonates. Unsaponifiable lipids extracted from algae were derivatized to non-ionic surfactants using a green chemical synthesis route based on a double esterification with succinic acid and polyethylene glycol. The in-depth molecular and structural surfactant characterization is included and indicates that the resulting properties fall between those of pure cholesterol and phytol used as surrogates for the reaction synthesis demonstration. This is the first demonstration of an effective and potentially high-value synthesis of functional surfactants with properties that can be tailored based on the relative composition of the resulting hydrocarbon alcohol components in the mixture. This novel green chemistry synthesis approach provides a route to high-value product synthesis from algae.


2022 ◽  
Vol 119 (3) ◽  
pp. e2106843119
Author(s):  
Fengbo Yu ◽  
Wei Zhao ◽  
Tao Qin ◽  
Wang Zhao ◽  
Yulian Chen ◽  
...  

Preventing pathogenic viral and bacterial transmission in the human environment is critical, especially in potential outbreaks that may be caused by the release of ancient bacteria currently trapped in the permafrost. Existing commercial disinfectants present issues such as a high carbon footprint. This study proposes a sustainable alternative, a bioliquid derived from biomass prepared by hydrothermal liquefaction. Results indicate a high inactivation rate of pathogenic virus and bacteria by the as-prepared bioliquid, such as up to 99.99% for H1N1, H5N1, H7N9 influenza A virus, and Bacillus subtilis var. niger spores and 99.49% for Bacillus anthracis. Inactivation of Escherichia coli and Staphylococcus epidermidis confirmed that low-molecular-weight and low-polarity compounds in bioliquid are potential antibacterial components. High temperatures promoted the production of antibacterial substances via depolymerization and dehydration reactions. Moreover, bioliquid was innoxious as confirmed by the rabbit skin test, and the cost per kilogram of the bioliquid was $0.04427, which is notably lower than that of commercial disinfectants. This study demonstrates the potential of biomass to support our biosafety with greater environmental sustainability.


2022 ◽  
pp. 195-234
Author(s):  
Mohd Asyraf Kassim ◽  
Tan Kean Meng ◽  
Ramizah Kamaludin ◽  
Azieyati Hani Hussain ◽  
Nurul Adela Bukhari

2021 ◽  
Author(s):  
BELETE BAYE GELAW(Lecturer) ◽  
Tamrate Tesfaye(D.r)

Abstract Natural fibers are of the good substitute sources for swapping synthetic fibers and reinforcing polymer matrices because of their contributions in maintaining of ecology, low energy requirement for processing and sustainability. The aim of this study is to characterize new fiber from Cyperus Dichrostachus A.Rich (CDA) plant. The CDA plant is a perennial non woody grass found in Ethiopian high lands and river basins. The fiber from this plant has good chemical composition of Cellulose (60.27%), hemicellulose (22.72%), lignin (16.59%) contents. It is light fiber having a density of 1010kg/m3 and good tenacity behaviour of 105.76cN/Tex with low elongation of 4.88%. The thermal stability of Cyperus Dicrostachys A,Rich fiber (CDAF) was studied using TGA and DTG analysis and revealed that the cellulose degraded at a temperature of 377.1°C. Fourier transform-infrared spectroscopy analysis confirmed that CDAF is rich in cellulose content. Furthermore, the properties of CDAF ensured that it can play a vital role as new reinforcement material and best alternative in bio composite industries. This will give competitive advantages when evaluated with other natural fibers reveals that there are significant potential benefits in implementation of “cleaner production” in textile material production industries. Specifically, replacement of synthetic fiber source with renewable biomass will reduce the environmental impact of these fibers. The future study will entail on investigating the possible valorization route especially in paper board, composite reinforcement and bio composite applications.


Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2269
Author(s):  
Jianguang Liang ◽  
Jingjian Zha ◽  
Nana Zhao ◽  
Zhengyu Tang ◽  
Yucai He ◽  
...  

Recently, the highly efficient production of value-added biobased chemicals from available, inexpensive, and renewable biomass has gained more and more attention in a sustainable catalytic process. Furfural is a versatile biobased chemical, which has been widely used for making solvents, lubricants, inks, adhesives, antacids, polymers, plastics, fuels, fragrances, flavors, fungicides, fertilizers, nematicides, agrochemicals, and pharmaceuticals. In this work, ultrasonic-treated chestnut shell waste (UTS-CSW) was utilized as biobased support to prepare biomass-based heterogeneous catalyst (CSUTS-CSW) for transforming waste lignocellulosic materials into furfural. The pore and surface properties of CSUTS-CSW were characterized with BET, SEM, XRD, and FT-IR. In toluene–water (2:1, v:v; pH 1.0), CSUTS-CSW (3.6 wt%) converted corncob into furfural yield in the yield of 68.7% at 180 °C in 15 min. CSUTS-CSW had high activity and thermostability, which could be recycled and reused for seven batches. From first to seventh, the yields were obtained from 68.7 to 47.5%. Clearly, this biobased solid acid CSUTS-CSW could be used for the sustainable conversion of waste biomasses into furfural, which had potential application in future.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1508
Author(s):  
Tetiana Kulik ◽  
Nataliia Nastasiienko ◽  
Borys Palianytsia ◽  
Mykola Ilchenko ◽  
Mats Larsson

Studies of the thermochemical properties of the important model compound of lignin-ferulic acid (FA) and its surface complexes are substantial for developing technologies for catalytic pyrolysis of renewable biomass into biofuels and lignin-derived chemicals as well as for bio-oil upgrading. In this work, the catalytic pyrolysis of ferulic acid over alumina was studied by temperature-programmed desorption mass spectrometry (TPD MS), in situ FT-IR spectroscopy, thermogravimetric analysis, and DFT calculations. We established that both the carboxyl group and the active groups (HO and CH3O) of the aromatic ring interact with the alumina surface. We calculated the kinetic parameters of formation of the main products of catalytic pyrolysis: 4-vinylguaiacol, guaiacol, hydroxybenzene, benzene, toluene, cresol, naphthalene, and PACs. Possible methods of their forming from the related surface complexes of FA are suggested.


Author(s):  
Isara Mongkolpichayarak ◽  
Duangkamon Jiraroj ◽  
Wipark Anutrasakda ◽  
Chawalit Ngamcharussrivichai ◽  
Joseph S.M. Samec ◽  
...  

Author(s):  
Gerardo Coppola ◽  
Maria Teresa Gaudio ◽  
Catia Giovanna Lopresto ◽  
Vincenza Calabro ◽  
Stefano Curcio ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Shuang Xiang ◽  
Lin Dong ◽  
Zhiqiang Wang ◽  
Xue Han ◽  
Luke Daemen ◽  
...  

The development of precious-metal-free catalysts to promote the sustainable production of fuels and chemicals from biomass remains an important and challenging target. Here, we report the efficient hydrogenolysis of biomass-derived 5-hydroxymethylfurfural to 2,5-dimethylfuran over a unique core-shell structured catalyst Co@CoO that affords the highest productivity among all catalysts reported to date. Surprisingly, we found that the catalytically active sites reside on the shell of CoO with oxygen vacancies rather than the metallic Co. The combination of various spectroscopic experiments and computational modelling reveals that the CoO shell incorporating oxygen vacancies drives the heterolytic and homolytic cleavage of dihydrogen to yield active Hδ- species, resulting in the exceptional catalytic activity. Co@CoO also exhibits excellent activity toward the direct hydrodeoxygenation of lignin model compounds. This study unlocks, for the first time, the potential of metal-oxide catalysts for the production of renewable biomass-derived fuels.


Sign in / Sign up

Export Citation Format

Share Document