Crystal Polymorphism and Multiple Crystal Forms

Author(s):  
Dario Braga ◽  
Fabrizia Grepioni ◽  
Lucia Maini ◽  
Marco Polito
Author(s):  
C. W. Carter

This chapter is about practical uses of mathematical models to simplify the task of finding the best conditions under which to crystallize a macromolecule. The models describe a system’s response to changes in the independent variables under experimental control. Such a mathematical description is a surface, whose two-dimensional projections can be plotted, so it is usually called a ‘response surface’. Various methods have been described for navigating an unknown surface. They share important characteristics: experiments performed at different levels of the independent variables are scored quantitatively, and fitted implicitly or explicitly, to some model for system behaviour. Initially, one examines behaviour on a coarse grid, seeking approximate indications for multiple crystal forms and identifying important experimental variables. Later, individual locations on the surface are mapped in greater detail to optimize conditions. Finding ‘winning combinations’ for crystal growth can be approached successively with increasingly well-defined protocols and with greater confidence. Whether it is used explicitly or more intuitively, the idea of a response surface underlies the experimental investigation of all multivariate processes, like crystal growth, where one hopes to find a ‘best’ set of conditions. The optimization process is illustrated schematically in Figure 1. In general, there are three stages to this quantitative approach: (a) Design. One must first induce variation in some desired experimental result by changing the experimental conditions. Experiments are performed according to a plan or design. Decisions must be made concerning the experimental variables and how to sample them. (b) Experiments and scores. Each experiment provides an estimate for how the system behaves at the corresponding point in the experimental space. When these estimates are examined together as a group, patterns often appear. For example, a crystal polymorphism may occur only in restricted regions of the variable space explored by the experiment. (c) Fitting and testing models. Imposing a mathematical model onto such patterns provides a way to predict how the system will behave at points where there were no experiments. The better the predictions, the better the model. Adequate models provide accurate interpolation within the range of experimental variables originally sampled; occasionally a very good model will correctly predict behaviour outside it (1).


Author(s):  
Dario Braga ◽  
Fabrizia Grepioni ◽  
Lucia Maini ◽  
Marco Polito

Author(s):  
A. Engel ◽  
D.L. Dorset ◽  
A. Massalski ◽  
J.P. Rosenbusch

Porins represent a group of channel forming proteins that facilitate diffusion of small solutes across the outer membrane of Gram-negative bacteria, while excluding large molecules (>650 Da). Planar membranes reconstituted from purified matrix porin (OmpF protein) trimers and phospholipids have allowed quantitative functional studies of the voltage-dependent channels and revealed concerted activation of triplets. Under the same reconstitution conditions but using high protein concentrations porin aggregated to 2D lattices suitable for electron microscopy and image processing. Depending on the lipid-to- protein ratio three different crystal packing arrangements were observed: a large (a = 93 Å) and a small (a = 79 Å) hexagonal and a rectangular (a = 79 Å b = 139 Å) form with p3 symmetry for the hexagonal arrays. In all crystal forms distinct stain filled triplet indentations could be seen and were found to be morphologically identical within a resolution of (22 Å). It is tempting to correlate stain triplets with triple channels, but the proof of this hypothesis requires an analysis of the structure in 3 dimensions.


2002 ◽  
Vol 67 (4) ◽  
pp. 479-489 ◽  
Author(s):  
Michal Hušák ◽  
Bohumil Kratochvíl ◽  
Ivana Císařová ◽  
Ladislav Cvak ◽  
Alexandr Jegorov ◽  
...  

Two new structures of semisynthetic ergot alkaloid terguride created by unusual number of symmetry-independent molecules were determined by X-ray diffraction methods at 150 K. Form A (monoclinic, P212121, Z = 12) contains three symmetry-independent terguride molecules and two molecules of water in the asymmetric part of the unit cell. The form CA (monoclinic, P21, Z = 8) is an anhydrate remarkable by the presence of four symmetry-independent molecules in the crystal structure. Conformations of twelve symmetry-independent molecules that were found in four already described terguride structures are compared with torsion angles obtained by ab initio quantum-mechanical calculations for the simplified model of N-cyclohexyl-N'-diethylurea.


Author(s):  
Yunhui Hao ◽  
Lei Gao ◽  
Xiunan Zhang ◽  
Rongli Wei ◽  
Ting Wang ◽  
...  

Stimuli-responsive molecular crystals are fascinating for their potential as adaptive smart materials. However, achieving one crystal that could respond to multiple stimuli and perform multiple functionalities simultaneously is still challenging....


2013 ◽  
Vol 28 (S2) ◽  
pp. S458-S469 ◽  
Author(s):  
Kenny Ståhl ◽  
Christian G. Frankær ◽  
Jakob Petersen ◽  
Pernille Harris

Powder diffraction from protein powders using in-house diffractometers is an effective tool for identification and monitoring of protein crystal forms and artifacts. As an alternative to conventional powder diffractometers a single crystal diffractometer equipped with an X-ray micro-source can be used to collect powder patterns from 1 µl samples. Using a small-angle X-ray scattering (SAXS) camera it is possible to collect data within minutes. A streamlined program has been developed for the calculation of powder patterns from pdb-coordinates, and includes correction for bulk-solvent. A number of such calculated powder patterns from insulin and lysozyme have been included in the powder diffraction database and successfully used for search-match identification. However, the fit could be much improved if peak asymmetry and multiple bulk-solvent corrections were included. When including a large number of protein data sets in the database some problems can be foreseen due to the large number of overlapping peaks in the low-angle region, and small differences in unit cell parameters between pdb-data and powder data. It is suggested that protein entries are supplied with more searchable keywords as protein name, protein type, molecular weight, source organism etc. in order to limit possible hits.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 129
Author(s):  
Liana Vella-Zarb ◽  
Ulrich Baisch

There is much interest and focus on solid forms of famciclovir. However, in spite of the abundance of reported differences in oral bioavailability, compressibility, and other physical–chemical properties of the various crystal forms of this drug, very little precise structural analysis is available in the literature to date. The form used in the commercial formulation is the anhydrous form I. Patents and patent applications report three different anhydrous crystalline forms on the basis of unindexed powder diffraction patterns. Single-crystal and variable-temperature X-ray diffraction experiments using the commercially available anhydrous form of famciclovir were carried out and led not only to the crystal structure determination of the anhydrous form I, but also to discovery of a new crystal form of anhydrous famciclovir from powder data.


2018 ◽  
Vol 553 (1-2) ◽  
pp. 261-271 ◽  
Author(s):  
Livia D. Prado ◽  
Alexandre B.X. Santos ◽  
Helvécio V.A. Rocha ◽  
Glaucio B. Ferreira ◽  
Jackson A.L.C. Resende

Sign in / Sign up

Export Citation Format

Share Document