Large eddy simulation of a lean premixed swirl flame in complex geometry - comparison of two turbulent combustion models

Author(s):  
P. Wang ◽  
J. Fröhlich ◽  
U. Maas
2014 ◽  
Vol 2014 ◽  
pp. 1-18 ◽  
Author(s):  
A. Andreini ◽  
C. Bianchini ◽  
A. Innocenti

The present study is devoted to verify current capabilities of Large Eddy Simulation (LES) methodology in the modeling of lean premixed flames in the typical turbulent combustion regime of Dry LowNOxgas turbine combustors. A relatively simple reactive test case, presenting all main aspects of turbulent combustion interaction and flame stabilization of gas turbine lean premixed combustors, was chosen as an affordable test to evaluate the feasibility of the technique also in more complex test cases. A comparison between LES and RANS modeling approach is performed in order to discuss modeling requirements, possible gains, and computational overloads associated with the former. Such comparison comprehends a sensitivity study to mesh refinement and combustion model characteristic constants, computational costs, and robustness of the approach. In order to expand the overview on different methods simulations were performed with both commercial and open-source codes switching from quasi-2D to fully 3D computations.


Author(s):  
Roman Keppeler ◽  
Michael Pfitzner ◽  
Luis Tay Wo Chong ◽  
Thomas Komarek ◽  
Wolfgang Polifke

In technically relevant combustion devices, combustion can take place in the vicinity of walls which can significantly affect the reaction and the heat transfer. However, only few studies focus on modelling of flame-wall interaction (FWI) for algebraic combustion models and virtually none consider FWI for algebraic Large Eddy Simulation combustion models. In the present work heat loss models, as previously published in the literature, are employed to extend a LES algebraic combustion model. The performance of the FWI models is evaluated by simulations of a nonadiabatic swirl flame. The simulation results are compared with experimental data of velocity field and heat release. The extent of the quenching zone and heat loss effects are determined in the simulations and compared with data from direct numerical simulations. Comparison of simulation and experimental data shows a significant improvement when heat loss effects are incorporated. Also the characteristic Peclet numbers are correctly predicted by FWI models.


Sign in / Sign up

Export Citation Format

Share Document