swirl flame
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 28)

H-INDEX

19
(FIVE YEARS 5)

Fuel ◽  
2021 ◽  
Vol 306 ◽  
pp. 121657
Author(s):  
Dong Di ◽  
Yingwen Yan ◽  
Yunpeng Liu

Author(s):  
Meng Han ◽  
Quanhong Xu ◽  
Xiao Han ◽  
Yuzhen Lin
Keyword(s):  

Author(s):  
Weijie Liu ◽  
Liang Zhang ◽  
Ranran Xue ◽  
Qian Yang ◽  
Huiru Wang

Abstract Thermoacoustic instability is a major issue in developing high-efficiency low emission gas turbine combustors. In order to predict the amplitude of limit cycle oscillation, an understanding of the amplitude dependent response of the flame, i.e. the nonlinear response, to large acoustic excitation is needed. In the present study, the nonlinear response of a low-swirl CH4/air premixed flame to acoustic excitation is experimentally studied. Amplitude dependences of flame dynamic at 75 Hz and 195 Hz are discussed in detail over a wide range of excitation level. Experimental results show the gain of flame describing function of the low-swirl flame has a peak value at 65 Hz and a local minimum at 105 Hz which is caused by the destructive (out of phase) and constructive (in phase) of the axial and azimuthal velocity fluctuation. At low perturbation level, flame heat release fluctuation is in linear relationship with the normalized velocity driving level. Heat release fluctuation begins to saturate at a certain level which depends on the driving frequency. The low-swirl flame oscillates mainly in the axial direction at 75 Hz while it is in the radial direction at 195 Hz. The non-linear flame heat release response is a result of combination effect of flame rollup process and harmonic responses.


2021 ◽  
Author(s):  
Weijie Liu ◽  
Liang Zhang ◽  
Ranran Xue ◽  
Qian Yang ◽  
Huiru Wang

Abstract Thermoacoustic instability is a major issue in developing high-efficiency low emission gas turbine combustors. In order to predict the amplitude of limit cycle oscillation, an understanding of the amplitude dependent response of the flame, i.e. the nonlinear response, to large acoustic excitation is needed. In the present study, the nonlinear response of a low-swirl CH4/air premixed flame to acoustic excitation is experimentally studied. Amplitude dependences of flame dynamic at 75 Hz and 195 Hz are discussed in detail over a wide range of excitation level. Experimental results show the gain of flame describing function of the low-swirl flame has a peak value at 65 Hz and a local minimum at 105 Hz which is caused by the destructive (out of phase) and constructive (in phase) of the axial and azimuthal velocity fluctuation. At low perturbation level, flame heat release fluctuation is in linear relationship with the normalized velocity driving level. Heat release fluctuation begins to saturate at a certain level which depends on the driving frequency. The low-swirl flame oscillates mainly in the axial direction at 75 Hz while it is in the radial direction at 195 Hz. The non-linear flame heat release response is a result of combination effect of flame rollup process and harmonic responses.


Sign in / Sign up

Export Citation Format

Share Document