scholarly journals Leakage-Resilient Public-Key Cryptography in the Bounded-Retrieval Model

Author(s):  
Joël Alwen ◽  
Yevgeniy Dodis ◽  
Daniel Wichs
Author(s):  
Joël Alwen ◽  
Yevgeniy Dodis ◽  
Moni Naor ◽  
Gil Segev ◽  
Shabsi Walfish ◽  
...  

2020 ◽  
Vol 14 (1) ◽  
pp. 172-201
Author(s):  
Suvradip Chakraborty ◽  
Janaka Alawatugoda ◽  
Chandrasekaran Pandu Rangan

AbstractWe present a new approach to construct several leakage-resilient cryptographic primitives, including leakage-resilient public-key encryption (PKE) schemes, authenticated key exchange (AKE) protocols and low-latency key exchange (LLKE) protocols. To this end, we introduce a new primitive called leakage-resilient non-interactive key exchange (LR-NIKE) protocol. We introduce an appropriate security model for LR-NIKE protocols in the bounded memory leakage (BML) settings. We then show a secure construction of the LR-NIKE protocol in the BML setting that achieves an optimal leakage rate, i.e., 1 – o(1). Our construction of LR-NIKE requires a minimal use of a leak-free hardware component. We argue that the use of such a leak-free hardware component seems to be unavoidable in any construction of an LR-NIKE protocol, even in the BML setting. Finally, we show how to construct the aforementioned leakage-resilient primitives from such an LR-NIKE protocol as summarized below. All these primitives also achieve the same (optimal) leakage rate as the underlying LR-NIKE protocol. We show how to construct a leakage-resilient (LR) IND-CCA-2-secure PKE scheme in the BML model generically from a bounded LR-NIKE (BLR-NIKE) protocol. Our construction of LR-IND-CCA-2 secure PKE differs significantly from the state-of-the-art constructions of these primitives, which mainly use hash proof techniques to achieve leakage resilience. Moreover, our transformation preserves the leakage-rate of the underlying BLR-NIKE protocol. We introduce a new leakage model for AKE protocols, in the BML setting, and present a leakage-resilient AKE protocol construction from the LR-NIKE protocol. We introduce the first-ever leakage model for LLKE protocols in the BML setting and the first construction of such a leakage-resilient LLKE from the LR-NIKE protocol.


2020 ◽  
Vol 49 (4) ◽  
pp. 464-481
Author(s):  
Yuh–Min Tseng ◽  
Jui-Di Wu ◽  
Sen-Shan Huang ◽  
Tung-Tso Tsai

Certificateless public-key system (CL-PKS) is a significant public-key cryptography and it solves both the key escrow and certificate management problems. Outsourced revocable certificateless public-key system (ORCL-PKS) with a cloud revocation server (CRS) not only provides a revocation mechanism, but also further outsources the revocation functionality to the CRS to reduce the computational burden of the key generation center (KGC). Recently, side-channel attacks have threatened some existing conventional cryptography (including CL-PKS). Indeed, adversaries can apply side-channel attacks to derive fractional constituents of private (or secret) keys to damage the security of these cryptographic protocols (or schemes). To withstand such attacks, leakage-resilient cryptography is an attractive approach. However, little research concerns with leakage-resilient certificateless cryptography. In this paper, the first leakage-resilient outsourced revocable certificateless signature (LR-ORCLS) scheme is presented. The proposed scheme allows adversaries to continually derive fractional constituents of private (or secret) keys and possesses overall unbounded leakage property. In the generic bilinear group (GBG) model, our scheme is shown to be existential unforgeable against adversaries. Finally, the comparisons between the proposed scheme and the previous revocable certificateless signature schemes are provided to demonstrate the merits of the proposed scheme.


2017 ◽  
Vol 9 (1) ◽  
pp. 30-35
Author(s):  
Sunderi Pranata ◽  
Hargyo Tri Nugroho ◽  
Hirofumi Yamaki

It is known that password itself is not enough for formidable authentication method since it has a lot of vulnerabilities. Multi factor authentication (MFA) is introduced for the next generation for good authentication to address that issue. MFA combines two or more of three principles of good security, “something you know”, “something you have”, and “something you are”. Most MFA mechanisms work as one time passwords (OTP). However, they can still be vulnerable to phishing and MiTM attack. On top of that, OTP can be hard to use as it requires user to input another password given by the device (SMS, token, authenticator). Implemented in small USB U2F device, FIDO U2F delivers easier yet stronger security on authentication process which implements public key cryptography, challenge-response protocol, and phishing and MitM protection.  Index Terms— Authentication protocol, FIDO U2F, Multi factor authentication, OTP


2012 ◽  
Vol 35 (9) ◽  
pp. 1881 ◽  
Author(s):  
Hui-Xian LI ◽  
Xu-Bao CHEN ◽  
Liao-Jun PANG ◽  
Yu-Min WANG

Sign in / Sign up

Export Citation Format

Share Document