Design and Simulation of the Type-2 Fuzzification Stage: Using Active Membership Functions

Author(s):  
Oscar Montiel ◽  
Roberto Sepúlveda ◽  
Yazmín Maldonado ◽  
Oscar Castillo
Author(s):  
Yang Chen ◽  
Jiaxiu Yang

In recent years, fuzzy identification based on system identification theory has become a hot academic topic. Interval type-2 fuzzy logic systems (IT2 FLSs) have become a rising technology. This paper designs a type of Nagar-Bardini (NB) structure-based singleton IT2 FLSs for fuzzy identification problems. The antecedents of primary membership functions of IT2 FLSs are chosen as Gaussian type-2 primary membership functions with uncertain standard deviations. Then, the back propagation algorithms are used to tune the parameters of IT2 FLSs according to the chain rule of derivation. Compared with the type-1 fuzzy logic systems, simulation studies show that the proposed IT2 FLSs can obtain better abilities of generalization for fuzzy identification problems.


2019 ◽  
Vol 27 (7) ◽  
pp. 1397-1406 ◽  
Author(s):  
Carmen Torres-Blanc ◽  
Susana Cubillo ◽  
Pablo Hernandez-Varela

2015 ◽  
Vol 14 (06) ◽  
pp. 1215-1242 ◽  
Author(s):  
Chun-Hao Chen ◽  
Tzung-Pei Hong ◽  
Yeong-Chyi Lee ◽  
Vincent S. Tseng

Since transactions may contain quantitative values, many approaches have been proposed to derive membership functions for mining fuzzy association rules using genetic algorithms (GAs), a process known as genetic-fuzzy data mining. However, existing approaches assume that the number of linguistic terms is predefined. Thus, this study proposes a genetic-fuzzy mining approach for extracting an appropriate number of linguistic terms and their membership functions used in fuzzy data mining for the given items. The proposed algorithm adjusts membership functions using GAs and then uses them to fuzzify the quantitative transactions. Each individual in the population represents a possible set of membership functions for the items and is divided into two parts, control genes (CGs) and parametric genes (PGs). CGs are encoded into binary strings and used to determine whether membership functions are active. Each set of membership functions for an item is encoded as PGs with real-number schema. In addition, seven fitness functions are proposed, each of which is used to evaluate the goodness of the obtained membership functions and used as the evolutionary criteria in GA. After the GA process terminates, a better set of association rules with a suitable set of membership functions is obtained. Experiments are made to show the effectiveness of the proposed approach.


Algorithms ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 206 ◽  
Author(s):  
Ivette Miramontes ◽  
Juan Guzman ◽  
Patricia Melin ◽  
German Prado-Arechiga

In this paper, the optimal designs of type-1 and interval type-2 fuzzy systems for the classification of the heart rate level are presented. The contribution of this work is a proposed approach for achieving the optimal design of interval type-2 fuzzy systems for the classification of the heart rate in patients. The fuzzy rule base was designed based on the knowledge of experts. Optimization of the membership functions of the fuzzy systems is done in order to improve the classification rate and provide a more accurate diagnosis, and for this goal the Bird Swarm Algorithm was used. Two different type-1 fuzzy systems are designed and optimized, the first one with trapezoidal membership functions and the second with Gaussian membership functions. Once the best type-1 fuzzy systems have been obtained, these are considered as a basis for designing the interval type-2 fuzzy systems, where the footprint of uncertainty was optimized to find the optimal representation of uncertainty. After performing different tests with patients and comparing the classification rate of each fuzzy system, it is concluded that fuzzy systems with Gaussian membership functions provide a better classification than those designed with trapezoidal membership functions. Additionally, tests were performed with the Crow Search Algorithm to carry out a performance comparison, with Bird Swarm Algorithm being the one with the best results.


2012 ◽  
Vol 20 (2) ◽  
pp. 224-234 ◽  
Author(s):  
Rahil Hosseini ◽  
Salah D. Qanadli ◽  
Sarah Barman ◽  
Mahdi Mazinani ◽  
Tim Ellis ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document