Comparative Study of Type-2 Fuzzy Inference System Optimization Based on the Uncertainty of Membership Functions

Author(s):  
Denisse Hidalgo ◽  
Patricia Melin ◽  
Oscar Castillo ◽  
Guillermo Licea
2013 ◽  
Vol 385-386 ◽  
pp. 1411-1414 ◽  
Author(s):  
Xue Bo Jin ◽  
Jiang Feng Wang ◽  
Hui Yan Zhang ◽  
Li Hong Cao

This paper describes an architecture of ANFIS (adaptive network based fuzzy inference system), to the prediction of chaotic time series, where the goal is to minimize the prediction error. We consider the stock data as the time series. This paper focuses on how the stock data affect the prediction performance. In the experiments we changed the number of data as input of the ANFIS model, the type of membership functions and the desired goal error, thereby increasing the complexity of the training.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1915
Author(s):  
Shupei Chen ◽  
Zhigang Chen ◽  
Jia Wu ◽  
Kanghuai Liu

In opportunistic networks, the requirement of QoS (quality of service) poses several major challenges to wireless mobile devices with limited cache and energy. This implies that energy and cache space are two significant cornerstones for the structure of a routing algorithm. However, most routing algorithms tackle the issue of limited network resources from the perspective of a deterministic approach, which lacks an adaptive data transmission mechanism. Meanwhile, these methods show a relatively low scalability because they are probably built up based on some special scenarios rather than general ones. To alleviate the problems, this paper proposes an adaptive delay-tolerant routing algorithm (DTCM) utilizing curve-trapezoid Mamdani fuzzy inference system (CMFI) for opportunistic social networks. DTCM evaluates both the remaining energy level and the remaining cache level of relay nodes (two-factor) in opportunistic networks and makes reasonable decisions on data transmission through CMFI. Different from the traditional fuzzy inference system, CMFI determines three levels of membership functions through the trichotomy law and evaluates the fuzzy mapping from two-factor fuzzy input to data transmission by curve-trapezoid membership functions. Our experimental results show that within the error interval of 0.05~0.1, DTCM improves delivery ratio by about 20% and decreases end-to-end delay by approximate 25% as compared with Epidemic, and the network overhead from DTCM is in the middle horizon.


Sign in / Sign up

Export Citation Format

Share Document