A Coordination-Based Model-Driven Method for Parallel Application Development

Author(s):  
Stefan Gudenkauf
2018 ◽  
Vol 21 (2) ◽  
Author(s):  
Guido Nuñez ◽  
Daniel Bonhaure ◽  
Magalí González ◽  
Nathalie Aquino ◽  
Luca Cernuzzi

Many Web applications have among their features the possibility of distributing their data and their business logic between the client and the server, also allowing an asynchronous communication between them. These features, originally associated with the arrival of Rich Internet Applications (RIA), remain particularly relevant and desirable. In the area of RIA, there are few proposals that simultaneously consider these features, adopt Model-Driven Development (MDD), and use implementation technologies based on scripting. In this work, we start from MoWebA, an MDD approach to web application development, and we extend it by defining a specific architecture model with RIA functionalities, supporting the previously mentioned features. We have defined the necessary metamodels and UML profiles, as well as transformation rules that allow you to generate code based on HTML5, Javascript, jQuery, jQuery Datatables and jQuery UI. The preliminary validation of the proposal shows positive evidences regarding the effectiveness, efficiency and satisfaction of the users with respect to the modeling and code generation processes of the proposal.


Model-Driven Development (MDD) tools for Rich Internet Applications (RIAs) development are focused on software modeling, and they leave automatic code generation in a second term. On the other hand, Rapid Application Development (RAD) tools for RIAs development enable developers to save development time and effort by leveraging reusable software components. AlexandRIA is a RAD tool that allows developers to automatically generate both source and native code of multi-device RIAs from a set of preferences selected throughout a wizard following the phases of a User Interface (UI) pattern-based code generation approach for multi-device RIAs. In this chapter, the use of the UI design process behind AlexandRIA is demonstrated by means of a sample development scenario addressing the development of a cloud services Application Programming Interfaces (APIs)-based cross-platform mobile RIA. This scenario is further revisited in a case study that addresses the automatic generation of an equivalent application using AlexandRIA.


Author(s):  
Sybille Caffiau ◽  
Patrick Girard

In user interface design, model-driven approaches usually involve generative solutions, producing interface by successive transformations of a set of initial models. These approaches have obvious limitations, especially for advanced user interfaces. Moreover, top-down design approaches (as generative approaches are) are not appropriate for interactive application development in which users need to be included in the whole design process. Based on strong associations between task models and dialogue models, the authors propose a global process, which facilitates the design of interactive applications conforming to their models, including a rule-checking step. This process permits either to start from a task model or a user-defined prototype. In any case, it allows an iterative development, including iterative user modifications, in line with user-centered design standards.


Author(s):  
Roy Gelbard

Applications require short development cycles and constant interaction with customers. Requirement gathering has become an ongoing process, reflecting continuous changes in technology and market demands. System analysis and modeling that are made at the initial project stages are quickly abandoned and become outmoded. Model driven architecture (MDA), rapid application development (RAD), adaptive development, extreme programming (XP), and others have resulted in a shift from the traditional waterfall model. These methodologies attempt to respond to the needs, but do they really fulfill their objectives, which are essential to the success of software development? Unified modeling language (UML) was created by the convergence of several well-known modeling methodologies. Despite its popularity and the investments that have been made in UML tools, UML is not yet translatable into running code. Some of the problems that have been discovered have to do with the absence of action semantics language and its size. This chapter reviews and evaluates the UML evolution (UML2, xUML), providing criteria and requirements to evaluate UML and the xUML potential to raise levels of abstraction, flexibility, and productivity enhancement. At the same time, it pinpoints its liabilities that keep it from completely fulfilling the vision of software development through a continuous exactable modeling process, considered to be the future direction for modeling and implementation.


Author(s):  
László Gönczy ◽  
Dániel Varró

As the use of SOA became a mainstream in enterprise application development, there is a growing need for designing non-functional aspects of service integration at the architectural level, instead of creating only technology specific assets (configuration descriptors). This architectural design supports flexibility and early validation of requirements. This chapter presents a model-driven method supporting the automated deployment of service configurations. This deployment technique is supported by an extensible tool chain where (i) service models are captured by a service-oriented extension of UML enabling to capture non-functional requirements, and (ii) configuration descriptors for the target deployment platform are derived by automated model transformations within the VIATRA2 framework.


Sign in / Sign up

Export Citation Format

Share Document