The Influence of Different Haptic Environments on Time Delay Discrimination in Force Feedback

Author(s):  
Markus Rank ◽  
Zhuanghua Shi ◽  
Hermann J. Müller ◽  
Sandra Hirche
2008 ◽  
Vol 3 (3-4) ◽  
pp. 371-378 ◽  
Author(s):  
Jumpei Arata ◽  
Hiroki Takahashi ◽  
Shigen Yasunaka ◽  
Kazushi Onda ◽  
Katsuya Tanaka ◽  
...  

2000 ◽  
Vol 9 (4) ◽  
pp. 337-349 ◽  
Author(s):  
Corinna Lathan ◽  
Kevin Cleary ◽  
Laura Traynor

Computed tomography (CT)-directed needle biopsies are routinely performed to gather tissue samples near the spine. As currently practiced, this procedure requires a great deal of spatial reasoning, skill, and training on the part of the interventional radiologist. Our goal was to evaluate the procedure through a task analysis and to make recommendations as to how the procedure could be improved through technological intervention. To this end, a spine biopsy surgical simulator was developed to mimic the current procedure and to serve as a development testbed for procedure innovation. Our methods for looking at the biopsy procedure itself included a task analysis (which produces a detailed list of tasks needed to complete a goal, their order, and time to completion) and an evaluation of human performance measures related to our simulator interface. Experiments were run to examine the effects of force and visual feedback on path-tracking performance and to determine the effects of time delay in the visual feedback on path-tracking performance. Force feedback improved performance in the conditions with visual feedback and in the conditions with visual feedback and time delay.


Author(s):  
J. Scot Hart ◽  
Gu¨nter Niemeyer

Wave variable controllers maintain passive communication across time delays in telerobotics. As passive elements, wave variable controllers interact well with other passive elements, such as P.D. controllers and masses, and use a combination of force and velocity signals to apply force feedback. Currently we are exploring the use of wave variable controllers with large non-backdrivable industrial-type slave devices where dynamics are dominated by inertial and frictional forces. The objective is to integrate force sensor measurements into wave variable controllers to provide low frequency force feedback and hide the slave’s friction and inertia from the user in the presence of a communication time delay. This paper presents and uses a wave variable based approach to design force control. The resulting wave variable based force controller is converted to power variables and shown to be similar to traditional force controllers. A 1-DOF telerobotic system is used to experimentally show the wave variable based force control combines with the enhanced stability properties of the wave communication channel to produce robust slave side force control. The resulting system is better able to maintain force control with rigid environments then a traditional controller both with and without communication time delay.


Author(s):  
Yuji Wang ◽  
Fuchun Sun ◽  
Huaping Liu

The four-channel architecture in teleoperation with force feedback has been studied in various existing literature. However, most of them focused on Lawrence architecture and did not research other cases. This paper proposes two other four-channel architectures: passive four-channel architecture and passive four-channel architecture with operator force. Furthermore, two types of multilateral shared control architecture based on passive four-channel architecture, which exists in space teleoperation, are put forward. One is dual-master multilateral shared control architecture, and the other is dual-slave multilateral shared control architecture. Simulations show that these four architectures can maintain stability in the presence of large time delay.


2013 ◽  
Vol 22 (4) ◽  
pp. 271-290 ◽  
Author(s):  
Tariq Abuhamdia ◽  
Jacob Rosen

Visual feedback and force feedback (haptics) are the two streams of information in a robotic bilateral teleoperation where the operator manipulates a robot in a remote location. Delivering the visual and the haptic information depends in part on the characteristics of the communication network and results in a nonsynchronized delay. The goal is to study the effect of constant nonsynchronized and synchronized time delay of visual and haptic information on the human teleoperation performance. The experimental setup included a virtual reality environment, which allows the operator to manipulate the virtual objects in a simulated remote environment through a haptic device that renders the force feedback. The visual and the haptic information were delayed independently in the range of 0–500 ms, creating 121 different scenarios of synchronized and nonsynchronized delays. Selecting specific parameters of the remote virtual environment guaranteed stable teleportation, given the time delays under study. The experimental tasks included tracing predefined geometrical shapes and a pick-and-place task, which simulates both structured and unstructured interactions under the influence of guiding forces. Eight subjects (n = 8) participated in the experiment performing three repetitions of three different teleoperation tasks with 121 combinations of visual and haptic time delays. The measured parameters that were used to assess the human performance were the task completion time and the position errors expressed as a function of the visual and the haptic time delay. Then, regression and ANOVA analyses were performed. The results indicated that the human performance is a function of the sum of the two delays. As the sum of the two delays increases, the human performance degrades and is expressed with an increase in completion time and position errors. The performance degradation is more pronounced in the pick-and-place task compared to the tracing task. In scenarios where the visual and the haptics information were out of synchronization, the human performance was better than intentionally delaying one source of information in an attempt to synchronize and unify the two delays. The results of this study may be applied to any teleoperation tasks over a network with inherent time delays and more specifically to telesurgery in which performance degradation due to time delay has a profound effect on the quality of the healthcare delivered, patient safety, and ultimately the outcomes of the surgical procedure itself.


Sign in / Sign up

Export Citation Format

Share Document