delay compensation
Recently Published Documents


TOTAL DOCUMENTS

786
(FIVE YEARS 204)

H-INDEX

37
(FIVE YEARS 7)

2021 ◽  
Vol 7 (4) ◽  
pp. 99-103
Author(s):  
Sergey Lesovoi ◽  
Mariia Globa

To achieve the maximum dynamic range of solar radio images obtained using aperture synthesis in relatively wide frequency bands 0.1−0.5 % of the operating frequency, it is necessary to compensate the signal propagation delays in the antenna receive path before calculating visibility functions (hereinafter visibilities). When visibilities are corrected without delay compensation, the signal-to-noise ratio decreases due to residual phase slopes in the receiving system bandwidth. In addition to enhancing dynamic range, preliminary compensation for delays simplifies real-time imaging — no antenna gain calibration is required to get a first approximation image. The requirements for the accuracy of antenna placement are also reduced — in contrast to the measurement of the phase visibility error, the measurement of the delay is actually not so critical to the antenna position errors that are larger than the operating wavelength. The instantaneous frequency band of the Siberian Radioheliograph, which determines the minimum step for measuring the phase slope, and hence the accuracy of determining the delay, is 10 MHz. At the speed of light in an optical fiber of ~0.7c, a step of 10 MHz makes it possible to unambiguously measure the difference between electrical lengths of cables up to 20 m and to correct antenna positions by radio observations, even if the error in the position of the antennas exceeds the operating wavelength. Correction of the band phase slopes during the observation time adapts the radio telescope to the temperature drift of delays and decreases antenna gain phase spread. This, in turn, leads to more stable solutions to systems of equations containing antenna gains as unknowns.


2021 ◽  
Vol 7 (4) ◽  
pp. 93-97
Author(s):  
Sergey Lesovoi ◽  
Mariia Globa

To achieve the maximum dynamic range of solar radio images obtained using aperture synthesis in relatively wide frequency bands 0.1−0.5 % of the operating frequency, it is necessary to compensate the signal propagation delays in the antenna receive path before calculating visibility functions (hereinafter visibilities). When visibilities are corrected without delay compensation, the signal-to-noise ratio decreases due to residual phase slopes in the receiving system bandwidth. In addition to enhancing dynamic range, preliminary compensation for delays simplifies real-time imaging — no antenna gain calibration is required to get a first approximation image. The requirements for the accuracy of antenna placement are also reduced — in contrast to the measurement of the phase visibility error, the measurement of the delay is actually not so critical to the antenna position errors that are larger than the operating wavelength. The instantaneous frequency band of the Siberian Radioheliograph, which determines the minimum step for measuring the phase slope, and hence the accuracy of determining the delay, is 10 MHz. At the speed of light in an optical fiber of ~0.7c, a step of 10 MHz makes it possible to unambiguously measure the difference between electrical lengths of cables up to 20 m and to correct antenna positions by radio observations, even if the error in the position of the antennas exceeds the operating wavelength. Correction of the band phase slopes during the observation time adapts the radio telescope to the temperature drift of delays and decreases antenna gain phase spread. This, in turn, leads to more stable solutions to systems of equations containing antenna gains as unknowns.


2021 ◽  
pp. 67-80
Author(s):  
Jinhui Zhang ◽  
Yuanqing Xia ◽  
Zhongqi Sun ◽  
Duanduan Chen

2021 ◽  
pp. 51-66
Author(s):  
Jinhui Zhang ◽  
Yuanqing Xia ◽  
Zhongqi Sun ◽  
Duanduan Chen

2021 ◽  
pp. 81-94
Author(s):  
Jinhui Zhang ◽  
Yuanqing Xia ◽  
Zhongqi Sun ◽  
Duanduan Chen

2021 ◽  
Vol 4 ◽  
pp. 44-47
Author(s):  
Andrew Alexeev ◽  
Rinata Sinitsyna

A couple of decades ago, data rates on the network were measured in kilobytes per second, and even then, online game developers had some problems with the packet loss and transmission delays. Now the transfer rate is hundreds of times higher, and the problem of delay compensation is even more relevant.For many dynamic online games, a transmission delay of as little as 20 ms can be quite noticeable, negatively affecting the gameplay and emotions of the game, which can repel players.The problem is exacerbated by the fact that along with the need to compensate for the time of delivery of packets, on the client side there are other non-network factors that are beyond the control of developers, which make the total delay 5-10 ms longer. Because of this, the desire to get rid of network delays as much and as well as possible becomes a necessity, and developers are forced to look for optimal ways to solve this problem.The problem statement is as follows: to review the causes of delays in online games and possible solu- tions, as well as the advantages and disadvantages of certain approaches. The problem is considered at the 4 levels of the TCP / IP network model, as well as at the application level. The approaches are given for the most commonly used protocols for each layer, but basic ideas can be easily transferred to other implementations.The main causes of delays under consideration: propagation delay, router queue delay, transmission delay, and processing delays.This article shows the impact of network delays on the online games and the ways to compensate for them, along with the theory of data transmission protocols in the network and the ways to solve the problems that arise in the development of algorithms.Recommendations for solving the compensation problem can be taken into account when designing and launching online shooters, strategies, etc. Thanks to the given receptions it is possible to minimize the general delay on the transfer of packets in a network, thanks to which the game on the client looks as if the player plays in the Single Player mode.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 8089
Author(s):  
Yichen Zhang ◽  
Junye Ma ◽  
Xian Tang

A CMOS active rectifier with digitally adaptive delay compensation for power efficiency improvement is presented in this work. The power transistors are turned on and turned off in advance under the control of the regenerated compensation signals, which are generated by the proposed compensation control circuit; therefore, the reverse current is eliminated, and the efficiency is increased. Simulation results in a standard 0.18 μm CMOS process show that the turn-on and turn-off delay of the rectifier is effectively compensated. The power efficiency is up to 90.6% when the proposed rectifier works at the operation frequency of 13.56 MHz.


2021 ◽  
Author(s):  
Erhan Sezgin ◽  
Anurag Mohapatra ◽  
Vedran S. Peric ◽  
Ozgül Salor ◽  
Thomas Hamacher

<i>The paper has been submitted to PSCC 2022 and is currently awaiting reviews.<br></i><br>This paper proposes and implements, a harmonic analysis algorithm for microgrid Power Hardware-in-the-loop (PHIL) experiments, when the point of common coupling (PCC) voltage cannot be directly wired to the local prosumer controllers due to long distances between them. Using frequency-shifting and filtering ideas, the voltage measurement is converted to magnitude and phase information. This is passed over an asynchronous communication link to another controller, where it is recovered into a waveform after delay compensation. The method allows for accurate power calculations and grid synchronization over distributed prosumer controllers. The proposed method can work at different execution rates depending on real time (RT) workload and is shown to be robust against step changes, harmonics and communication delays. The method is demonstrated with two PHIL experiments at the CoSES, TU Munich lab in grid connected and island mode.


Sign in / Sign up

Export Citation Format

Share Document