remote manipulation
Recently Published Documents


TOTAL DOCUMENTS

127
(FIVE YEARS 22)

H-INDEX

16
(FIVE YEARS 4)

Author(s):  
B. C. Benefiel ◽  
E. D. Larsen ◽  
M. B. Prime ◽  
A. M. Phillips ◽  
K. B. Davies ◽  
...  

Abstract Background In nuclear fuel plates of low-enriched U-10Mo (LEU) clad with aluminum by hot isostatic pressing (HIP), post-irradiation stresses arising during reactor shutdown are a major concern for safe reactor operations. Measurement of those residual stresses has not previously been possible because the high radioactivity of the plates requires handling only by remote manipulation in a hot cell. Objective The incremental slitting method for measuring through-thickness stress profiles was modified, and a system for automated, remote operation was built and tested. Methods Experimental modifications consisted of replacing electric-discharge machining (EDM) with a small end mill and strain-gauge measurements with cantilever displacement measurements. The inverse method used to calculate stresses was the pulse-regularization method modified to allow discontinuities across material interfaces. The new system was validated by comparing with conventional slitting on a depleted U-10Mo (DU) fuel plate. Results The new system was applied to two measurements each on six as-fabricated (pre-irradiation) LEU miniature fuel plates. Variations between the measurements at two locations in the same plate were strongly correlated with measured geometrical heterogeneity in the plate—a tilt in the fuel foil. Compressive stresses in the U-10Mo were shown to increase from 20 to 250 MPa as the ratio of aluminum thickness to U-10Mo thickness increased causing increased constraint during cooling. Faster cooling rates during processing also increased stress magnitudes. Conclusions The measurements trends agreed with data in the literature from similar plates made with DU, which further validates the method. Because other methods are impractical in a hot cell, the modified slitting method is now poised for the first measurements of post-irradiation stresses.


2021 ◽  
Vol 5 (ISS) ◽  
pp. 1-20
Author(s):  
Tao Morisaki ◽  
Ryoma Mori ◽  
Ryosuke Mori ◽  
Kohki Serizawa ◽  
Yasutoshi Makino ◽  
...  

Augmented Human (AH) is a research field enhancing human physical abilities or supporting human activity using advanced technologies. As one of the AH approaches, previous studies have attached an actuator to a human body or tools used for an activity. The attached actuators are used to control their movements to support an activity. In this study, instead of attaching actuators, we propose to directly apply noncontact ultrasound force to a lightweight tool to manipulate it. The advantage of using noncontact force is that users do not need to wear a specific device and to process tools used for the activity. As a proof-of-concept system, we developed an ultrasound-based curveball system by which table tennis players can shoot a curveball regardless of their physical ability. In the system, a moving ping-pong ball (PPB) is a target tool for remote manipulation. The system curves the trajectory of a moving PPB by continuously focusing ultrasound on it. Users can control the curve timing and the curve direction (left or right) using a racket-shaped controller. In the user study, we conducted an actual table tennis match using the curveball system and qualitatively confirmed that the player using the system had the upper hand. Another user study using a ball dispenser quantitatively showed that the ultrasound-driven curveball increased the number of mistakes of the opponent player 2.95 times. These results indicate that the proposed concept is feasible.


2021 ◽  
Author(s):  
Lingyun Chen ◽  
Abdalla Swikir ◽  
Sami Haddadin
Keyword(s):  

2021 ◽  
Vol 8 ◽  
Author(s):  
Mark Zolotas ◽  
Murphy Wonsick ◽  
Philip Long ◽  
Taşkın Padır

In remote applications that mandate human supervision, shared control can prove vital by establishing a harmonious balance between the high-level cognition of a user and the low-level autonomy of a robot. Though in practice, achieving this balance is a challenging endeavor that largely depends on whether the operator effectively interprets the underlying shared control. Inspired by recent works on using immersive technologies to expose the internal shared control, we develop a virtual reality system to visually guide human-in-the-loop manipulation. Our implementation of shared control teleoperation employs end effector manipulability polytopes, which are geometrical constructs that embed joint limit and environmental constraints. These constructs capture a holistic view of the constrained manipulator’s motion and can thus be visually represented as feedback for users on their operable space of movement. To assess the efficacy of our proposed approach, we consider a teleoperation task where users manipulate a screwdriver attached to a robotic arm’s end effector. A pilot study with prospective operators is first conducted to discern which graphical cues and virtual reality setup are most preferable. Feedback from this study informs the final design of our virtual reality system, which is subsequently evaluated in the actual screwdriver teleoperation experiment. Our experimental findings support the utility of using polytopes for shared control teleoperation, but hint at the need for longer-term studies to garner their full benefits as virtual guides.


Nanomaterials ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 2267
Author(s):  
Iuliia P. Novoselova ◽  
Andreas Neusch ◽  
Julia-Sarita Brand ◽  
Marius Otten ◽  
Mohammad Reza Safari ◽  
...  

Magnetic nanoparticles (MNPs) are widely known as valuable agents for biomedical applications. Recently, MNPs were further suggested to be used for a remote and non-invasive manipulation, where their spatial redistribution or force response in a magnetic field provides a fine-tunable stimulus to a cell. Here, we investigated the properties of two different MNPs and assessed their suitability for spatio-mechanical manipulations: semisynthetic magnetoferritin nanoparticles and fully synthetic ‘nanoflower’-shaped iron oxide nanoparticles. As well as confirming their monodispersity in terms of structure, surface potential, and magnetic response, we monitored the MNP performance in a living cell environment using fluorescence microscopy and asserted their biocompatibility. We then demonstrated facilitated spatial redistribution of magnetoferritin compared to ‘nanoflower’-NPs after microinjection, and a higher magnetic force response of these NPs compared to magnetoferritin inside a cell. Our remote manipulation assays present these tailored magnetic materials as suitable agents for applications in magnetogenetics, biomedicine, or nanomaterial research.


2021 ◽  
Author(s):  
Iuliia P Dr. Novoselova ◽  
Andreas Neusch ◽  
Julia-Sarita Brand ◽  
Marius Otten ◽  
Mohammad Reza Safari ◽  
...  

Magnetic nanoparticles (MNPs) are widely known as valuable agents for biomedical ap-plications. Yet, for their successful application within cells they need to fulfill a variety of demands such as monodispersity, biocompatibility or sufficient magnetic response. Given these prerequisites, MNPs may be used for remote, non-invasive manipulation, where their spatial redistribution or force response in a magnetic field provides a fine-tunable stimulus to a cell. Here, we investigate the properties of two different MNPs and their suitability for spatio-mechanical manipulations: sem-isynthetic magnetoferritin nanoparticles and fully synthetic nanoflower-shaped iron-oxide nano-particles. Next to characterizing their structure, surface potential and magnetic response, we monitor the MNP performance in a living cell environment using fluorescence microscopy and confirm their biocompatibility. We then demonstrate their capability to spatially redistribute and to respond to magnetic force gradients inside a cell. Our remote manipulation assays present these tailored mag-netic materials as suitable agents for applications in magnetogenetics, biomedicine or nanomaterial research.


2021 ◽  
Vol 8 ◽  
Author(s):  
Lamar O. Mair ◽  
Georges Adam ◽  
Sagar Chowdhury ◽  
Aaron Davis ◽  
Dian R. Arifin ◽  
...  

Small soft robotic systems are being explored for myriad applications in medicine. Specifically, magnetically actuated microrobots capable of remote manipulation hold significant potential for the targeted delivery of therapeutics and biologicals. Much of previous efforts on microrobotics have been dedicated to locomotion in aqueous environments and hard surfaces. However, our human bodies are made of dense biological tissues, requiring researchers to develop new microrobotics that can locomote atop tissue surfaces. Tumbling microrobots are a sub-category of these devices capable of walking on surfaces guided by rotating magnetic fields. Using microrobots to deliver payloads to specific regions of sensitive tissues is a primary goal of medical microrobots. Central nervous system (CNS) tissues are a prime candidate given their delicate structure and highly region-specific function. Here we demonstrate surface walking of soft alginate capsules capable of moving on top of a rat cortex and mouse spinal cord ex vivo, demonstrating multi-location small molecule delivery to up to six different locations on each type of tissue with high spatial specificity. The softness of alginate gel prevents injuries that may arise from friction with CNS tissues during millirobot locomotion. Development of this technology may be useful in clinical and preclinical applications such as drug delivery, neural stimulation, and diagnostic imaging.


Robotica ◽  
2021 ◽  
pp. 1-12
Author(s):  
Xiao Sun ◽  
Hiroshi Naito ◽  
Akio Namiki ◽  
Yang Liu ◽  
Takashi Matsuzawa ◽  
...  

Abstract Operation of tools has long been studied in robotics. Although appropriate hold of the tool by robots is the base of successful tool operation, it is not with ease especially for tools with complicated shape. In this paper, an assist system for a four-limbed robot is proposed for remote operation of reaching and grasping electric drills using deep reinforcement learning. Through comparative evaluation experiments, the increase of success rate for reaching and grasping is verified and the decrease in both physical and mental workload of the operator is also validated by the index of NASA-TLX.


2021 ◽  
Vol 8 (3A) ◽  
Author(s):  
Amir Zacarias Mesquita

The aim of this work is to demonstrate the need to develop more efficient means for radiological protection, making use of the latest automation and robotics technologies. A manipulator model has been developed that has technological differentials that can positively influence the performance and cost of remote manipulation. The built-in equipment has a Slave manipulator, developed without using semiconductor elements. They are housed in the control center, which is attached to the manipulator via umbilical cord, facilitating the equipment adaptation in hot cells and other working environments. The arrangement of the joints and the links, have similarities with the anatomy of the human arm, improving the instinctively of the operation. To demonstrate its technological feasibility, a prototype Master-Slave manipulator was designed, and built using three control programs, which were written exclusively for this work. It was also designed to reduce construction and operation costs, making it accessible to most areas. The results obtained with the prototype construction are shown to be promising, providing an incentive to continue the development of manipulators using similar technologies. The equipment, obtained satisfactory results in relation to the operability, being able to perform movement tasks of loads, as foreseen in the project.


Sign in / Sign up

Export Citation Format

Share Document