scholarly journals A Design Space for User Interface Composition

Author(s):  
Fabio Paternò ◽  
Carmen Santoro ◽  
Lucio Davide Spano
Author(s):  
Rahul Kumar ◽  
Shankar Natarajan ◽  
Mohamed Akram Ulla Shariff ◽  
Parameswaranath Vaduckupurath Mani

Author(s):  
Eduardo Castro e Costa ◽  
Joaquim Jorge ◽  
Aaron D. Knochel ◽  
José Pinto Duarte

AbstractIn mass customization, software configurators enable novice end-users to design customized products and services according to their needs and preferences. However, traditional configurators hardly provide an engaging experience while avoiding the burden of choice. We propose a Design Participation Model to facilitate navigating the design space, based on two modules. Modeler enables designers to create customizable designs as parametric models, and Navigator subsequently permits novice end-users to explore these designs. While most parametric designs support direct manipulation of low-level features, we propose interpolation features to give customers more flexibility. In this paper, we focus on the implementation of such interpolation features into Navigator and its user interface. To assess our approach, we designed and performed user experiments to test and compare Modeler and Navigator, thus providing insights for further developments of our approach. Our results suggest that barycentric interpolation between qualitative parameters provides a more easily understandable interface that empowers novice customers to explore the design space expeditiously.


Author(s):  
Behrooz Fallahi ◽  
Seyyed Alireza Seyyed Mousavi ◽  
Arjun Kumar Perla ◽  
Ilia Mokhtarian

Many applications require design of a linkage that executes a rectilinear motion. In this study a synthesis procedure for six-bar mechanism for generation of rectilinear motion is presented. To achieve this goal, matrix algebra is used to describe translation, rotation, and inversion of motion of links. These concepts then are used to implement the classical three-precision point synthesize of a four-bar mechanism with a coupler point that traces a straight line. The motion of this four-bar mechanism is inverted and then is used to synthesize a second four-bar mechanism. The merging of these two four-bar mechanisms forms a six-bar mechanism such that the motion of one link is rectilinear motion. To implement this procedure, a graphical user interface is developed for the ease of exploring the design space. The utility of this approach is demonstrated by designing a linkage for a lift-truck.


Author(s):  
Kwang-ik An ◽  
Ju-ho Song ◽  
Keon-soo Park ◽  
Je-hoon Park ◽  
Joo-hyeon Park ◽  
...  

Author(s):  
Sarah Bouzit ◽  
Gaelle Calvary ◽  
Joelle Coutaz ◽  
Denis Chene ◽  
Eric Petit ◽  
...  

Author(s):  
Mikael Wiberg

No matter if we think about interaction design as a design tradition aimed at giving form to the interaction with computational objects, or if we think about interaction design as being simply about user interface design it is hard to escape the fact that the user interface to a large extent defines the scene and the form of the interaction. Without adopting a fully deterministic perspective here it is still a fact that if the user interface is screen-based and graphical and the input modality is mouse-based, then it is likely that the form of that interaction, that is what the turn-taking looks like and what is demanded by the user, is very similar to other screen-based interfaces with similar input devices. However, the design space for the form of interaction is growing fast. While command-based interfaces and text-based interfaces sort of defined the whole design space in the 1970s, the development since then, including novel ways of bringing sensors, actuators, and smart materials to the user interface has certainly opened up for a broader design space for interaction design. But it is not only the range of materials that has been extended over the last few decades, but we have also moved through a number of form paradigms for interaction design. With this as a point of departure I will in this chapter reflect on how we have moved from early days of command-based user interfaces, via the use of metaphors in the design of graphical user interfaces (GUIs), towards ways of interacting with the computer via tangible user interfaces (TUIs). Further on, I will describe how this movement towards TUIs was a first step away from building user interfaces based on representations and metaphors and a first step towards material interactions.


2021 ◽  
Vol 11 (4) ◽  
pp. 1367
Author(s):  
Jorge C. S. Cardoso ◽  
Jorge M. Ribeiro

Tangible User Interface (TUI) represents a huge potential for Virtual Reality (VR) because tangibles can naturally provide rich haptic cues which are often missing in VR experiences that make use of standard controllers. We are particularly interested in implementing TUIs for smartphone-based VR, given the lower usage barrier and easy deployment. In order to keep the overall system simple and accessible, we have explored object detection through visual markers, using the smartphone’s camera. In order to help VR experience designers, in this work we present a design space for marker-based TUI for VR. We have mapped this design space by developing several marker-based tangible interaction prototypes and through a formative study with professionals with different backgrounds. We then instantiated the design space in a Tangible VR Book which we evaluate with remote user studies inspired by the vignette methodology.


Sign in / Sign up

Export Citation Format

Share Document