scholarly journals Password-Authenticated Session-Key Generation on the Internet in the Plain Model

Author(s):  
Vipul Goyal ◽  
Abhishek Jain ◽  
Rafail Ostrovsky
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jaehyu Kim ◽  
JooSeok Song

With the advent of the Internet of Things (IoT) era, we are experiencing rapid technological progress. Billions of devices are connected to each other, and our homes, cities, hospitals, and schools are getting smarter and smarter. However, to realize the IoT, several challenging issues such as connecting resource-constrained devices to the Internet must be resolved. Recently introduced Low Power Wide Area Network (LPWAN) technologies have been devised to resolve this issue. Among many LPWAN candidates, the Long Range (LoRa) is one of the most promising technologies. The Long Range Wide Area Network (LoRaWAN) is a communication protocol for LoRa that provides basic security mechanisms. However, some security loopholes exist in LoRaWAN’s key update and session key generation. In this paper, we propose a dual key-based activation scheme for LoRaWAN. It resolves the problem of key updates not being fully supported. In addition, our scheme facilitates each layer in generating its own session key directly, which ensures the independence of all layers. Real-world experimental results compared with the original scheme show that the proposed scheme is totally feasible in terms of delay and battery consumption.


2019 ◽  
Vol 92 ◽  
pp. 101744 ◽  
Author(s):  
George Margelis ◽  
Xenofon Fafoutis ◽  
George Oikonomou ◽  
Robert Piechocki ◽  
Theo Tryfonas ◽  
...  

2020 ◽  
Vol 17 (1) ◽  
pp. 246-253 ◽  
Author(s):  
Ravi Raushan Kumar Chaudhary ◽  
Ashish Singh ◽  
Kakali Chatterjee

Security is a major challenge in modern IoT based healthcare monitoring systems. It provides many benefits such as critical patient monitoring, remote diagnosis at anytime, anywhere. Hence, security of this data is essential when the healthcare professionals access it. Also, while storing the patients record; it must be kept safe from misuse and modification of data as other devices can easily track it. To prevent this type of threats, we have proposed a mutual authentication protocol to enhance health care security and to resist vulnerable attacks. The proposed scheme used Challenge response protocol for the authentication purpose and the Diffie-Hellman key exchange protocol is used for generation of the session key generation. The security analysis of the proposed scheme shows that the scheme is more secure and resist all the major attacks as compared to other schemes. The Formal verification of this schema also ensures that it resists most probable attacks in this system. The result of the proposed authentication scheme shows that it has low computational and communicational load.


2018 ◽  
Vol 44 (2) ◽  
pp. 35-40
Author(s):  
Tanya jabor ◽  
Hiba Taresh ◽  
Alaa Raheema

All the important information is exchanged between facilities using the internet and networks, all these data should besecret and secured probably, the personal information of person in each of these institutions day by day need to organized secretlyand the need of the cryptography systems is raised which can easily encrypt the personal and critical data and it can be shared withother centers via internet without and concerns about privacy. Chaotic performance is added to different phases of AES but very few apply it on key generation and choosing ChebyshevPolynomial will provide a chaotic map which will led to random strong key. our system based on modified advanced encryptionstandard (AES) , with encryption and decryption in real time taking to consideration the criticality of data images that beenencrypted the main encryption algorithm is the same the modification is done by replacing the key generation algorithm byChebyshev Polynomial to generate key with the required key size.


The Internet of Things (IoT) is a network of Internet-enabled devices that can sense, communicate, and react to changes in their environment. It is commonly applied in many applications, like building automation, medical healthcare systems, transportation, environment monitoring, and energy management. Billions of these computing devices are connected to the Internet to exchange data between themselves and/or their infrastructure. However, the privacy of data seems to be the greatest issue that needs to be solved. This paper intends to develop an improved data sanitization and restoration framework in IoT for higher-order privacy preservation. The preservation process is carried out using key that is optimally selected. For the optimal selection of key, a new Improved Dragonfly Algorithm (IDA) is introduced. Finally, the algorithmic analysis is carried out by varying parameters like enemy distraction weight e and food attraction weight f  of the proposed algorithm


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 39717-39720 ◽  
Author(s):  
Saru Kumari ◽  
Pradeep Chaudhary ◽  
Chien-Ming Chen ◽  
Muhammad Khurram Khan

Sign in / Sign up

Export Citation Format

Share Document