Secure Session Key Generation Technique for Group Communication

Author(s):  
Anurag Tomar
Author(s):  
R. Singh

In this article we implement a client server model using limited-used key generation scheme (Kungpisdan, Le, & Srinivasan, 2004) to generate a set of session keys that are never transmitted, which means that there is no chance for the attacker to sniff the packets and retrieve keys while they are being transmitted. These session keys are used for encrypting and hashing the data to be transmitted from mobile client device to the servers in wired network and vice versa. The updating of the session keys used in this technique does not rely on any long-term shared key, instead the process is based upon the last session key used. This technique of elevating the frequency of the key update to the next possible level makes the system much more secure than the other present techniques. In addition to providing better security, this technique also enhances the performance of a limited resource device by avoiding the repeated generation of keys on it.


2017 ◽  
Vol 10 (9) ◽  
pp. 2895
Author(s):  
G. Manikandan ◽  
P. Rajendiran ◽  
V. Harish ◽  
Nooka Sai Kumar

2020 ◽  
Vol 17 (1) ◽  
pp. 246-253 ◽  
Author(s):  
Ravi Raushan Kumar Chaudhary ◽  
Ashish Singh ◽  
Kakali Chatterjee

Security is a major challenge in modern IoT based healthcare monitoring systems. It provides many benefits such as critical patient monitoring, remote diagnosis at anytime, anywhere. Hence, security of this data is essential when the healthcare professionals access it. Also, while storing the patients record; it must be kept safe from misuse and modification of data as other devices can easily track it. To prevent this type of threats, we have proposed a mutual authentication protocol to enhance health care security and to resist vulnerable attacks. The proposed scheme used Challenge response protocol for the authentication purpose and the Diffie-Hellman key exchange protocol is used for generation of the session key generation. The security analysis of the proposed scheme shows that the scheme is more secure and resist all the major attacks as compared to other schemes. The Formal verification of this schema also ensures that it resists most probable attacks in this system. The result of the proposed authentication scheme shows that it has low computational and communicational load.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Jaehyu Kim ◽  
JooSeok Song

With the advent of the Internet of Things (IoT) era, we are experiencing rapid technological progress. Billions of devices are connected to each other, and our homes, cities, hospitals, and schools are getting smarter and smarter. However, to realize the IoT, several challenging issues such as connecting resource-constrained devices to the Internet must be resolved. Recently introduced Low Power Wide Area Network (LPWAN) technologies have been devised to resolve this issue. Among many LPWAN candidates, the Long Range (LoRa) is one of the most promising technologies. The Long Range Wide Area Network (LoRaWAN) is a communication protocol for LoRa that provides basic security mechanisms. However, some security loopholes exist in LoRaWAN’s key update and session key generation. In this paper, we propose a dual key-based activation scheme for LoRaWAN. It resolves the problem of key updates not being fully supported. In addition, our scheme facilitates each layer in generating its own session key directly, which ensures the independence of all layers. Real-world experimental results compared with the original scheme show that the proposed scheme is totally feasible in terms of delay and battery consumption.


Sign in / Sign up

Export Citation Format

Share Document