An Intelligent Control of an Inverted Pendulum Based on an Adaptive Interval Type-2 Fuzzy Inference System

Author(s):  
Ayad Al-Mahturi ◽  
Fendy Santoso ◽  
Matthew A. Garratt ◽  
Sreenatha G. Anavatti
2020 ◽  
Vol 10 (11) ◽  
pp. 3919 ◽  
Author(s):  
Sung Wook Ohn ◽  
Ho Namgung

According to International Regulations for Preventing Collision at Sea, collision avoidance started from assessing the collision risk. In particular, the radar was mentioned as suitable equipment for observation and analysis of the collision risk. Thus, many researches have been conducted by utilizing the radar. Fuzzy Inference System based on Type-1 Fuzzy Logic (T1FIS) using Distance to Closest Point of Approach ( D C P A ) and Time to Closest Point of Approach ( T C P A ) computed via the radar has been largely used for assessing the collision risk. However, the T1FIS had significant limitations on the membership function not including linguistic and numerical uncertainties. In order to solve the issue, we developed the Fuzzy Inference System based on Interval Type-2 Fuzzy Logic (IT2FIS) as follows: (i) the T1FIS was selected among proposed methods based on the type-1 fuzzy logic; (ii) we extended the T1FIS into the IT2FIS by gradually increasing the Footprint of Uncertainty (FOU) size taking into consideration symmetry, and (iii) numerical simulations were conducted for performance validation. As a result, the IT2FIS using the FOU size “±5%” (i.e., interval 10% between upper membership function and lower membership function) not only computed the appropriate and linear collision risk index smoothly until near-collision situation but also help to overcome uncertainties that exist in real navigation environments.


Sign in / Sign up

Export Citation Format

Share Document