A New Practical Electric Vehicle Battery Management System

Author(s):  
Yanpeng Shi ◽  
Guoxin Wu
2016 ◽  
Vol 6 (1) ◽  
pp. 19
Author(s):  
Wisnu Ananda ◽  
Mehammed Nomeri

Battery-powered Electric Vehicles (BEVs) such as electric cars, use the battery as the main power source to drive the motor, in addition to lighting, horn, and other functions. Currently, Balai Besar Bahan dan Barang Teknik (B4T) has been conducting research in Lithium-ion (Li-ion) battery prototype for an electric vehicle. However, the management system in accordance with the electrical characteristics of the battery prototype is still not available. Thus, to integrate the battery prototype with electrical components of the electric vehicle, it is necessary to design Battery Management System (BMS). Two important battery parameters observed are State of Charge (SOC) and State  of  Health  (SOH).  The  method  used  for  SOC  was  Coulomb  Counting.  SOH  was  determined  using  a combination between Support Vector Machine (SVM) and Relevance Vector Machine (RVM). Based on the experiments by using BMS, the battery performance could be more controlled and produces a linear curve of SOC and SOH.Keywords: Battery, electric vehicle, Battery Management System (BMS), Lithium-ion (Li-ion).


2015 ◽  
Vol 789-790 ◽  
pp. 784-790
Author(s):  
Jian Kun Peng ◽  
Hong Wen He ◽  
Deng Pan

FlexRay bus is considered as a more promising bus in the future with the performance of real-time, scalable, and fault-tolerant. In this paper we will design an electric vehicle battery management system (BMS) based on FlexRay bus, including the hardware design, the SoC estimation method, FlexRay protocol design and software development. The test bench experiment results show the system design is reasonable and feasible.Keywords- FlexRay, BMS, Li-ion battery,SoC, Design


Sign in / Sign up

Export Citation Format

Share Document