Measuring and Modeling of Multi-layered Subsurface Scattering for Human Skin

Author(s):  
Tomohiro Mashita ◽  
Yasuhiro Mukaigawa ◽  
Yasushi Yagi
2013 ◽  
Vol 274 ◽  
pp. 423-426 ◽  
Author(s):  
Meng Zhao Yang ◽  
Kuan Quan Wang

Human skin is a highly scattering translucent material and is difficult to be scaled. In this paper, we combine approximation of specular reflection with subsurface scattering in the texture space and introduce the dynamic environment lighting to render the human skin to obtain a much more realistic expression. Considering lower computation and requirement for real-time, we use few spherical harmonics coefficients to represent the environment lighting approximated by the environment map. Further, by rotating the environment map, we obtain dynamic rendering effect of human skin appearance, which has a great practical value for creation of virtual character in real scene.


2011 ◽  
Vol 10 (1) ◽  
pp. 45-51
Author(s):  
Hiroyuki Kubo ◽  
Yoshinori Dobashi ◽  
Shigeo Morishima

Simulating sub-surface scattering is one of the most effective ways to realistically synthesize translucent materials such as marble, milk or human skin. We have developed a curvature-dependent reflectance function (CDRF) which mimics the presence of subsurface scattering. In this approach, we provide only a single parameter that represents the intensity of theincident light scattered in a translucent material. The parameter is not only provided by curve-fitting to a simulated data-set, but also manipulated by an artist. Furthermore, this approach is easily implementable on a GPU and does not require any complicated pre-processing and multi-pass rendering as is often the case in this area of research.


2010 ◽  
Vol 2 (4) ◽  
pp. 131-136 ◽  
Author(s):  
Zorica Gajinov ◽  
Milan Matić ◽  
Sonja Prćić ◽  
Verica Đuran

Abstract Visual perception of human skin is determined by the light that reflects off the skin surface to retina and interpretation of these information by visual centers in the brain cortex. Skin has a partly translucent and turbid structure and visual perceptions depend on interactions between the light and structures of the skin surface and below it, through absorption, reflection and scattering. Light absorption by the skin depends on the composition, absorption spectra and amount (volume fraction) of chromophores. Subsurface scattering occurs within the skin layers: Rayleigh scattering (subcellular structures sized up to 1/10 of incident wavelength) and Mie scattering (collagen, melanosomes). Due to fluctuations of the refractive index within tissue components and intense scattering, the spatial distribution of light within the skin is diffuse. Skin images are created by the light that reflects off the skin after being color-modified by absorption and being scattered on the skin surface and internal skin structures.


Author(s):  
Douglas R. Keene ◽  
Robert W. Glanville ◽  
Eva Engvall

A mouse monoclonal antibody (5C6) prepared against human type VI collagen (1) has been used in this study to immunolocalize type VI collagen in human skin. The enbloc method used involves exposing whole tissue pieces to primary antibody and 5 nm gold conjugated secondary antibody before fixation, and has been described in detail elsewhere (2).Biopsies were taken from individuals ranging in age from neonate to 65 years old. By immuno-electron microscopy, type VI collagen is found to be distributed as a fine branching network closely associated with (but not attached to) banded collagen fibrils containing types I and III collagen (Fig. 1). It appears to enwrap fibers, to weave between individual fibrils within a fiber, and to span the distance separating fibers, creating a “web-like network” which entraps fibers within deep papillary and reticular dermal layers (Fig. 2). Relative to that in the dermal matrix, the concentration of type VI collagen is higher around endothelial basement membranes limiting the outer boundaries of nerves, capillaries, and fat cells (Fig. 3).


Author(s):  
A. P. Lupulescu ◽  
H. Pinkus ◽  
D. J. Birmingham

Our laboratory is engaged in the study of the effect of different chemical agents on human skin, using electron microscopy. Previous investigations revealed that topical use of a strong alkali (NaOH 1N) or acid (HCl 1N), induces ultrastructural changes in the upper layers of human epidermis. In the current experiments, acetone and kerosene, which are primarily lipid solvents, were topically used on the volar surface of the forearm of Caucasian and Negro volunteers. Skin specimens were bioptically removed after 90 min. exposure and 72. hours later, fixed in 3% buffered glutaraldehyde, postfixed in 1% phosphate osmium tetroxide, then flat embedded in Epon.


Author(s):  
R. R. Warner

Keratinocytes undergo maturation during their transit through the viable layers of skin, and then abruptly transform into flattened, anuclear corneocytes that constitute the cellular component of the skin barrier, the stratum corneum (SC). The SC is generally considered to be homogeneous in its structure and barrier properties, and is often shown schematically as a featureless brick wall, the “bricks” being the corneocytes, the “mortar” being intercellular lipid. Previously we showed the outer SC was not homogeneous in its composition, but contained steep gradients of the physiological inorganic elements Na, K and Cl, likely originating from sweat salts. Here we show the innermost corneocytes in human skin are also heterogeneous in composition, undergoing systematic changes in intracellular element concentration during transit into the interior of the SC.Human skin biopsies were taken from the lower leg of individuals with both “good” and “dry” skin and plunge-frozen in a stirred, cooled isopentane/propane mixture.


Author(s):  
L.X. Oakford ◽  
S.D. Dimitrijevich ◽  
R. Gracy

In intact skin the epidermal layer is a dynamic tissue component which is maintained by a basal layer of mitotically active cells. The protective upper epidermis, the stratum corneum, is generated by differentiation of the suprabasal keratinocytes which eventually desquamate as anuclear comeocytes. A similar sequence of events is observed in vitro in the non-contracting human skin equivalent (HSE) which was developed in this lab (1). As a part of the definition process for this model of living skin we are examining its ultrastructural features. Since desmosomes are important in maintaining cell-cell interactions in stratified epithelia their distribution in HSE was examined.


Sign in / Sign up

Export Citation Format

Share Document