human epidermis
Recently Published Documents


TOTAL DOCUMENTS

1126
(FIVE YEARS 99)

H-INDEX

78
(FIVE YEARS 6)

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2106
Author(s):  
Anita Kovács ◽  
Stella Zsikó ◽  
Fanni Falusi ◽  
Erzsébet Csányi ◽  
Mária Budai-Szűcs ◽  
...  

In recent years, the study of dermal preparations has received increased attention. There are more and more modern approaches to evaluate transdermal formulations, which are crucial in proving the efficacy of a formulation. The aim of this study was to compare permeation across innovative synthetic membranes (Strat-M and Skin PAMPA membranes) and heat-separated human epidermis (HSE, gold standard membrane) using four different dermal formulations. The Strat-M and Skin PAMPA membranes were designed to mimic the stratum corneum layer of the human epidermis. There have also been some publications on their use in dermal formulation development, but further information is needed. Drug permeation was measured using formulations containing diclofenac sodium (two hydrogels and two creams). The HSE, Strat-M, and Skin PAMPA membranes proved to be significantly different, but based on the results, the Strat-M membrane showed the greatest similarity to HSE. The permeation data of the different formulations across different membranes showed good correlations with formulations similar to these four, which allows the prediction of permeation across HSE using these synthetic membranes. In addition, Strat-M and Skin PAMPA membranes have the potential to select and differentiate a dermal formulation containing diclofenac sodium as an early screening model.


2021 ◽  
Author(s):  
Fabien P CHEVALIER ◽  
Julie RORTEAU ◽  
Sandra FERRARO ◽  
Lisa S MARTIN ◽  
Alejandro GONZALEZ-TORRES ◽  
...  

Chronological aging is characterized by an alteration of the genes regulatory network. In human skin, epidermal keratinocytes fail to differentiate properly with aging, leading to the weakening of the epidermal function. MiR-30a is particularly overexpressed with epidermal aging, but the downstream molecular mechanisms are still uncovered. The aim of this study was to decipher the effects of miR-30a overexpression in the human epidermis, with a focus on keratinocyte differentiation. We formally identified the mitophagy receptor BNIP3L as a direct target of miR-30a. Using a 3D organotypic model of reconstructed human epidermis overexpressing miR-30a, we observed a strong reduction of BNIP3L expression in the granular layer. In human epidermal sections of skin biopsies from donors of different ages, we observed a similar pattern of BNIP3L decrease with aging. Moreover, human primary keratinocytes undergoing differentiation in vitro also showed a decreased expression of BNIP3L with age, together with a retention of mitochondria. Moreover, aging is associated with altered mitochondrial metabolism in primary keratinocytes, including decreased ATP-linked respiration. Thus, miR-30a is a negative regulator of programmed mitophagy during keratinocytes terminal differentiation, impairing epidermal homeostasis with aging.


2021 ◽  
Author(s):  
Giulia Lombardo ◽  
Gloria Melzi ◽  
Serena Indino ◽  
Stefano Piazza ◽  
Enrico Sangiovanni ◽  
...  

2021 ◽  
Vol 141 (10) ◽  
pp. S167
Author(s):  
J. Borowczyk ◽  
J. Drukala ◽  
N.C. Brembilla ◽  
W. Boehncke ◽  
M. Shutova

2021 ◽  
Author(s):  
Julia T Oliveira ◽  
Rodrigo de Vecchi ◽  
Vanja Dakic ◽  
Gabriela Vitoria ◽  
Carolina Pedrosa ◽  
...  

Cell senescence may promote epidermal inflammation and degeneration, termed as inflammaging, which is accompanied by keratinocyte loss, resulting in fine lines of wrinkles. Recent findings showed that healthy elderly skin expresses age- and neuron-related amyloidogenic proteins, such as tau, β-Amyloid34, and α-synuclein (α-Syn), typically found in patients with neurodegenerative diseases. These proteins form toxic aggregates that trigger inflammatory signals. Herein, we investigated the impact of oligomeric α-Syn (Oα-Syn) on the neurosphere (NP) and the reconstructed human epidermis (RHE) 3D models. First, we found the expression of α-Syn, β-Amyloid, and amyloid precursor protein (APP) in the RHE. Second, we challenged the RHE and NP with Oα-Syn, which decreased RHE regeneration, measured by the percentage of cell proliferation and thickness of the stratum basale, but did not affect NP neurite outgrowth. Oα-Syn did not decrease the number of human neonatal epidermal keratinocytes (HEKn) but, as seen for the RHE, it also decreased the proliferation of HEKn. We confirmed that the oligomeric, and not the monomeric α-Syn species, accounted for the proliferation-decreasing effect. Oα-Syn also increased the NF-κB nuclear translocation in HEKn analyzed by nucleus/cytoplasm NF-κB fluorescence intensity. In addition, Oα-Syn triggered inflammation in the RHE, by increasing the mRNA levels of IL-1β and tumor necrosis factor-alpha (TNF-α), and the release of TNF-α in a time-dependent manner. These findings show that Oα-Syn does not affect neurite outgrowth but induces a decrease in keratinocyte proliferation along with epidermal inflammation. With our tridimensional models, we demonstrated that the neurodegenerative protein Oα-Syn also degenerates the epidermis, drawing attention to the need of target-based screening to prevent and treat the effects of skin aging.


Author(s):  
Irini M. Dijkhoff ◽  
Benedetta Petracca ◽  
Roxane Prieux ◽  
Giuseppe Valacchi ◽  
Barbara Rothen-Rutishauser ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document