A Novel Collaborative Filtering Model for Personalized Recommendation

Author(s):  
Wang Qian
2021 ◽  
Vol 1 (4) ◽  
Author(s):  
Parivash Pirasteh ◽  
Mohamed-Rafik Bouguelia ◽  
K. C. Santosh

2014 ◽  
Vol 1044-1045 ◽  
pp. 1484-1488
Author(s):  
Yue Kun Fan ◽  
Xin Ye Li ◽  
Meng Meng Cao

Currently collaborative filtering is widely used in e-commerce, digital libraries and other areas of personalized recommendation service system. Nearest-neighbor algorithm is the earliest proposed and the main collaborative filtering recommendation algorithm, but the data sparsity and cold-start problems seriously affect the recommendation quality. To solve these problems, A collaborative filtering recommendation algorithm based on users' social relationships is proposed. 0n the basis of traditional filtering recommendation technology, it combines with the interested objects of user's social relationship and takes the advantage of the tags to projects marked by users and their interested objects to improve the methods of recommendation. The experimental results of MAE ((Mean Absolute Error)) verify that this method can get better quality of recommendation.


Author(s):  
M. Waseem Chughtai ◽  
Imran Ghani ◽  
Ali Selamat ◽  
Seung Ryul Jeong

Web-based learning or e-Learning in contrast to traditional education systems offer a lot of benefits. This article presents the Goal-based Framework for providing personalized similarities between multi users profile preferences in formal e-Learning scenarios. It consists of two main approaches: content-based filtering and collaborative filtering. Because only traditional content-based filtering is not sufficient to generate the recommendations for new-users, therefore, the proposed work hybridized multi user's collaborative filtering functionalities with personalized content-based profile preferences filtering. The main purpose of this proposed work is to (a) overcome the user-based cold-start profile recommendations and (b) improve the recommendations accuracy for new-users in formal e-learning recommendation systems. The experimental has been done by using the famous ‘MovieLens' dataset with 15.86% density of the user-item matrix with respect to ratings, while the evaluation of experimental results have been performed with precision mean and recall mean to test the effectiveness of Goal-based personalized recommendation framework. The Experimental result Precision: 81.90% and Recall: 86.56% show that the proposed framework goals performed well for the improvement of user-based cold-start issue as well as for content-based profile recommendations, using multi users personalized collaborative similarities, in formal e-Learning scenarios effectively.


2013 ◽  
Vol 765-767 ◽  
pp. 1218-1222
Author(s):  
Xiang Yun Xiong ◽  
Yu Chen Fu ◽  
Zhao Qing Liu

Personalized recommendation based on bipartite network has attracted more and more attention. Its obviously better than CF (Collaborative Filtering). In this paper, we propose a multi-dimensional recommendation algorithm called BNPM. It combines item-based, user-based and category-based recommendation model to improve recommendation quality. The experimental results show that the algorithm can improve the diversity and reduce the popularity on the base of holding the accuracy of the recommendation


Author(s):  
Gang Huang ◽  
Man Yuan ◽  
Chun-Sheng Li ◽  
Yong-he Wei

Firstly, this paper designs the process of personalized recommendation method based on knowledge graph, and constructs user interest model. Second, the traditional personalized recommendation algorithms are studied and their advantages and disadvantages are analyzed. Finally, this paper focuses on the combination of knowledge graph and collaborative filtering recommendation algorithm. They are effective to solve the problem where [Formula: see text] value is difficult to be determined in the clustering process of traditional collaborative filtering recommendation algorithm as well as data sparsity and cold start, utilizing the ample semantic relation in knowledge graph. If we use RDF data, which is distributed by the E and P (Exploration and Development) database based on the petroleum E and P, to verify the validity of the algorithm, the result shows that collaborative filtering algorithm based on knowledge graph can build the users’ potential intentions by knowledge graph. It is enlightening to query the information of users. In this way, it expands the mind of users to accomplish the goal of recommendation. In this paper, a collaborative filtering algorithm based on domain knowledge atlas is proposed. By using knowledge graph to effectively classify and describe domain knowledge, the problems are solved including clustering and the cold start in traditional collaborative filtering recommendation algorithm. The better recommendation effect has been achieved.


Sign in / Sign up

Export Citation Format

Share Document