A Model-Based Development Approach for Model Transformations

Author(s):  
Shekoufeh Kolahdouz-Rahimi ◽  
Kevin Lano
Author(s):  
Gabor Simko ◽  
Tihamer Levendovszky ◽  
Sandeep Neema ◽  
Ethan Jackson ◽  
Ted Bapty ◽  
...  

One of the primary goals of the Adaptive Vehicle Make (AVM) program of DARPA is the construction of a model-based design flow and tool chain, META, that will provide significant productivity increase in the development of complex cyber-physical systems. In model-based design, modeling languages and their underlying semantics play fundamental role in achieving compositionality. A significant challenge in the META design flow is the heterogeneity of the design space. This challenge is compounded by the need for rapidly evolving the design flow and the suite of modeling languages supporting it. Heterogeneity of models and modeling languages is addressed by the development of a model integration language – CyPhy – supporting constructs needed for modeling the interactions among different modeling domains. CyPhy targets simplicity: only those abstractions are imported from the individual modeling domains to CyPhy that are required for expressing relationships across sub-domains. This “semantic interface” between CyPhy and the modeling domains is formally defined, evolved as needed and verified for essential properties (such as well-formedness and invariance). Due to the need for rapid evolvability, defining semantics for CyPhy is not a “one-shot” activity; updates, revisions and extensions are ongoing and their correctness has significant implications on the overall consistency of the META tool chain. The focus of this paper is the methods and tools used for this purpose: the META Semantic Backplane. The Semantic Backplane is based on a mathematical framework provided by term algebra and logics, incorporates a tool suite for specifying, validating and using formal structural and behavioral semantics of modeling languages, and includes a library of metamodels and specifications of model transformations.


Author(s):  
Bjorn Butzin ◽  
Frank Golatowski ◽  
Christoph Niedermeier ◽  
Norbert Vicari ◽  
Egon Wuchner

2011 ◽  
Vol 23 (13) ◽  
pp. 1583-1606 ◽  
Author(s):  
Niusha Hakimi Pour ◽  
Paul Strooper ◽  
Andy Wellings

Author(s):  
K. Lano ◽  
S. Kolahdouz-Rahimi

Model-Based Development (MBD) has become increasingly used for critical systems, and it is the subject of the MBDV supplement to the DO-178C standard. In this chapter, the authors review the requirements of DO-178C for model-based development, and they identify ways in which MBD can be combined with formal verification to achieve DO-178C requirements for traceability and verifiability of models. In particular, the authors consider the implications for model transformations, which are a central part of MBD approaches, and they identify how transformations can be verified using formal methods tools.


Author(s):  
Umut Durak

Model-Based Development has become an industry wide standard paradigm. As an open source alternative, Scilab/Xcos is being widely employed as a hybrid dynamic systems modeling tool. With the increasing efficiency in implementation using graphical model development and code generation, the modeling and simulation community is struggling with assuring quality as well as maintainability and extendibility. Refactoring is defined as an evolutionary modernization activity where, most of the time, the structure of the artifact is changed to alter its quality characteristics, while keeping its behavior unchanged. It has been widely established as a technique for textual programming languages to improve the code structure and quality. While refactoring is also regarded as one of the key practices of model engineering, the methodologies and approaches for model refactoring are still under development. Architecture-Driven Modernization (ADM) has been introduced by the software engineering community as a model-based approach to software modernization, in which the implicit information that lies in software artifacts is extracted to models and model transformations are applied for modernization tasks. Regarding refactoring as a low level modernization task, the practices from ADM are adaptable. Accordingly, this paper proposes a model-based approach for model refactoring in order to come up with more efficient and effective model refactoring methodology that is accessible and extendable by modelers. Like other graphical modeling tools, Scilab/Xcos also possesses a formalized model specification conforming to its implicit metamodel. Rather than proposing another metamodel for knowledge extraction, this pragmatic approach proposes to conduct in place model-to-model transformations for refactoring employing the Scilab/Xcos model specification. To construct a structured model-based approach, the implicit Scilab/Xcos metamodel is explicitly presented utilizing ECORE as a meta-metamodel. Then a practical model transformation approach is established based on Scilab scripting. A Scilab toolset is provided to the modeler for in-place model-to-model transformations. Using a sample case study, it is demonstrated that proposed model transformation functions in Scilab provide a valuable refactoring tool.


2017 ◽  
Vol 12 (12) ◽  
pp. 1207-1218 ◽  
Author(s):  
Elizabeth C. M. de Lange ◽  
Willem van den Brink ◽  
Yumi Yamamoto ◽  
Wilhelmus E. A. de Witte ◽  
Yin Cheong Wong

Sign in / Sign up

Export Citation Format

Share Document