An Approach to Detect Hard Exudates Using Normalized Cut Image Segmentation Technique in Digital Retinal Fundus Image

Author(s):  
Diptoneel Kayal ◽  
Sreeparna Banerjee
2014 ◽  
Vol 14 (3) ◽  
pp. 5494-5499
Author(s):  
Sreeparna Banerjee ◽  
Diptoneel Kayal

Diabetic retinopathy is considered to be one of the major causes of blindness among diabetes mellitus patients. Due to diabetic retinopathy blood vessels of retina gets damaged and fat, lipoprotein substances gets leaked out of the damaged blood vessels and are deposited in the intra retinal space. These substances are viewed as yellowish or whitish in color and are termed as exudates. They are the most important visible sign of the presence of diabetic retinopathy. Exudates are of two types, (a) hard exudates and (b) soft exudates. If the disease is not detected in early stages then it may lead to complete loss of vision to the diabetes patients. Detection of exudates is extremely difficult to detect by visual inspection due to small inner diameter of retina and inadequate lighting conditions. An efficient image analysis program can detect the presence effectively. In this paper we have proposed an automatic method for detection of hard exudates. The proposed method exhibits a sensitivity of 97.60% and specificity of 93% and accuracy of 95.70%.


Author(s):  
Rubina Sarki ◽  
Khandakar Ahmed ◽  
Hua Wang ◽  
Yanchun Zhang ◽  
Jiangang Ma ◽  
...  

AbstractDiabetic eye disease (DED) is a cluster of eye problem that affects diabetic patients. Identifying DED is a crucial activity in retinal fundus images because early diagnosis and treatment can eventually minimize the risk of visual impairment. The retinal fundus image plays a significant role in early DED classification and identification. An accurate diagnostic model’s development using a retinal fundus image depends highly on image quality and quantity. This paper presents a methodical study on the significance of image processing for DED classification. The proposed automated classification framework for DED was achieved in several steps: image quality enhancement, image segmentation (region of interest), image augmentation (geometric transformation), and classification. The optimal results were obtained using traditional image processing methods with a new build convolution neural network (CNN) architecture. The new built CNN combined with the traditional image processing approach presented the best performance with accuracy for DED classification problems. The results of the experiments conducted showed adequate accuracy, specificity, and sensitivity.


Sign in / Sign up

Export Citation Format

Share Document