scholarly journals An Undecidable Nested Recurrence Relation

Author(s):  
Marcel Celaya ◽  
Frank Ruskey
Keyword(s):  
Author(s):  
Musraini M Musraini M ◽  
Rustam Efendi ◽  
Rolan Pane ◽  
Endang Lily

Barisan Fibonacci dan Lucas telah digeneralisasi dalam banyak cara, beberapa dengan mempertahankan kondisi awal, dan lainnya dengan mempertahankan relasi rekurensi. Makalah ini menyajikan sebuah generalisasi baru barisan Fibonacci-Lucas yang didefinisikan oleh relasi rekurensi B_n=B_(n-1)+B_(n-2),n≥2 , B_0=2b,B_1=s dengan b dan s bilangan bulat  tak negatif. Selanjutnya, beberapa identitas dihasilkan dan diturunkan menggunakan formula Binet dan metode sederhana lainnya. Juga dibahas beberapa identitas dalam bentuk determinan.   The Fibonacci and Lucas sequence has been generalized in many ways, some by preserving the initial conditions, and others by preserving the recurrence relation. In this paper, a new generalization of Fibonacci-Lucas sequence is introduced and defined by the recurrence relation B_n=B_(n-1)+B_(n-2),n≥2, with ,  B_0=2b,B_1=s                          where b and s are non negative integers. Further, some identities are generated and derived by Binet’s formula and other simple methods. Also some determinant identities are discussed.


Mathematics ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 804
Author(s):  
Ioannis K. Argyros ◽  
Neha Gupta ◽  
J. P. Jaiswal

The semi-local convergence analysis of a well defined and efficient two-step Chord-type method in Banach spaces is presented in this study. The recurrence relation technique is used under some weak assumptions. The pertinency of the assumed method is extended for nonlinear non-differentiable operators. The convergence theorem is also established to show the existence and uniqueness of the approximate solution. A numerical illustration is quoted to certify the theoretical part which shows that earlier studies fail if the function is non-differentiable.


2021 ◽  
Vol 62 (3) ◽  
pp. 032106
Author(s):  
Paolo Amore ◽  
Francisco M. Fernández

2012 ◽  
Vol 49 (03) ◽  
pp. 612-626
Author(s):  
Boris L. Granovsky ◽  
Alexander V. Kryvoshaev

We prove that a stochastic process of pure coagulation has at any timet≥ 0 a time-dependent Gibbs distribution if and only if the rates ψ(i,j) of single coagulations are of the form ψ(i;j) =if(j) +jf(i), wherefis an arbitrary nonnegative function on the set of positive integers. We also obtain a recurrence relation for weights of these Gibbs distributions that allow us to derive the general form of the solution and the explicit solutions in three particular cases of the functionf. For the three corresponding models, we study the probability of coagulation into one giant cluster by timet> 0.


2007 ◽  
Vol 21 (02n03) ◽  
pp. 139-154 ◽  
Author(s):  
J. H. ASAD

A first-order differential equation of Green's function, at the origin G(0), for the one-dimensional lattice is derived by simple recurrence relation. Green's function at site (m) is then calculated in terms of G(0). A simple recurrence relation connecting the lattice Green's function at the site (m, n) and the first derivative of the lattice Green's function at the site (m ± 1, n) is presented for the two-dimensional lattice, a differential equation of second order in G(0, 0) is obtained. By making use of the latter recurrence relation, lattice Green's function at an arbitrary site is obtained in closed form. Finally, the phase shift and scattering cross-section are evaluated analytically and numerically for one- and two-impurities.


Author(s):  
Engi̇n Özkan ◽  
Mi̇ne Uysal ◽  
Bahar Kuloğlu

We introduce the Catalan transform of the Incomplete Jacobsthal numbers. We apply the Hankel transform to the Catalan transforms of these numbers. We calculate determinants of matrixes formed with [Formula: see text]by using Hankel transform. Then we define the incomplete [Formula: see text]-Jacobsthal polynomials. Then we examine the recurrence relation and some properties of these polynomials.


2016 ◽  
Vol 67 (1) ◽  
pp. 41-46
Author(s):  
Pavel Trojovský

Abstract Let k ≥ 1 and denote (Fk,n)n≥0, the k-Fibonacci sequence whose terms satisfy the recurrence relation Fk,n = kFk,n−1 +Fk,n−2, with initial conditions Fk,0 = 0 and Fk,1 = 1. In the same way, the k-Lucas sequence (Lk,n)n≥0 is defined by satisfying the same recurrence relation with initial values Lk,0 = 2 and Lk,1 = k. These sequences were introduced by Falcon and Plaza, who showed many of their properties, too. In particular, they proved that Fk,n+1 + Fk,n−1 = Lk,n, for all k ≥ 1 and n ≥ 0. In this paper, we shall prove that if k ≥ 1 and $F_{k,n + 1}^s + F_{k,n - 1}^s \in \left( {L_{k,m} } \right)_{m \ge 1} $ for infinitely many positive integers n, then s =1.


2005 ◽  
Vol 89 (516) ◽  
pp. 482-483
Author(s):  
Michael A. B. Deakin
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document