Characterization of the ABC Transporter Gene slr1045 Involved in Acid-stress Tolerance of Synechocystis sp. PCC 6803

Author(s):  
Hiroko Tahara ◽  
Sachiko Fukai ◽  
Mamoru Sambe ◽  
Miho Kobayashi ◽  
Junji Uchiyama ◽  
...  
2018 ◽  
Vol 139 (1-3) ◽  
pp. 325-335 ◽  
Author(s):  
Junji Uchiyama ◽  
Ayako Itagaki ◽  
Haruna Ishikawa ◽  
Yu Tanaka ◽  
Hidetaka Kohga ◽  
...  

2008 ◽  
pp. 1519-1522
Author(s):  
Hisataka Ohta ◽  
Yousuke Shibata ◽  
Youhei Haseyama ◽  
Yuka Yoshino ◽  
Takehiro Suzuki ◽  
...  

2020 ◽  
Vol 146 (1-3) ◽  
pp. 165-174
Author(s):  
Junji Uchiyama ◽  
Yutaro Ito ◽  
Ayumi Matsuhashi ◽  
Yuta Ichikawa ◽  
Mamoru Sambe ◽  
...  

2015 ◽  
Vol 125 (1-2) ◽  
pp. 233-242 ◽  
Author(s):  
Hiroko Tahara ◽  
Ayumi Matsuhashi ◽  
Junji Uchiyama ◽  
Satoru Ogawa ◽  
Hisataka Ohta

1991 ◽  
Vol 266 (17) ◽  
pp. 11111-11115
Author(s):  
M. Ikeuchi ◽  
B. Eggers ◽  
G.Z. Shen ◽  
A. Webber ◽  
J.J. Yu ◽  
...  

2011 ◽  
Vol 435 (3) ◽  
pp. 733-742 ◽  
Author(s):  
Pitter F. Huesgen ◽  
Helder Miranda ◽  
XuanTam Lam ◽  
Manuela Perthold ◽  
Holger Schuhmann ◽  
...  

Cyanobacteria require efficient protein-quality-control mechanisms to survive under dynamic, often stressful, environmental conditions. It was reported that three serine proteases, HtrA (high temperature requirement A), HhoA (HtrA homologue A) and HhoB (HtrA homologue B), are important for survival of Synechocystis sp. PCC 6803 under high light and temperature stresses and might have redundant physiological functions. In the present paper, we show that all three proteases can degrade unfolded model substrates, but differ with respect to cleavage sites, temperature and pH optima. For recombinant HhoA, and to a lesser extent for HtrA, we observed an interesting shift in the pH optimum from slightly acidic to alkaline in the presence of Mg2+ and Ca2+ ions. All three proteases formed different homo-oligomeric complexes with and without substrate, implying mechanistic differences in comparison with each other and with the well-studied Escherichia coli orthologues DegP (degradation of periplasmic proteins P) and DegS. Deletion of the PDZ domain decreased, but did not abolish, the proteolytic activity of all three proteases, and prevented substrate-induced formation of complexes higher than trimers by HtrA and HhoA. In summary, biochemical characterization of HtrA, HhoA and HhoB lays the foundation for a better understanding of their overlapping, but not completely redundant, stress-resistance functions in Synechocystis sp. PCC 6803.


Plant Science ◽  
1996 ◽  
Vol 115 (2) ◽  
pp. 261-266 ◽  
Author(s):  
Yoshihiro Narusaka ◽  
Akio Murakami ◽  
Mari Saeki ◽  
Hirokazu Kobayashi ◽  
Kimiyuki Satoh

2015 ◽  
Vol 6 ◽  
Author(s):  
Chun-Hsien Hung ◽  
Kaichiro Endo ◽  
Koichi Kobayashi ◽  
Yuki Nakamura ◽  
Hajime Wada

Sign in / Sign up

Export Citation Format

Share Document