Back Analysis of Treporti Test Embankment with a Time Dependent Small Strain Stiffness Constitutive Model

Author(s):  
Thomas Benz ◽  
Valentina Berengo ◽  
Paolo Simonini ◽  
Martino Leoni
2018 ◽  
Vol 7 (3) ◽  
pp. 1826
Author(s):  
Heyam H. Shaalan ◽  
Mohd Ashraf Mohamad Ismail ◽  
Romziah Azit

Shotcrete is ordinary concrete applied to the surface under high pressure. It demonstrates a highly time-dependent behaviour after few hours of application. Traditional approaches assume a simple linear elastic behaviour using a hypothetical young modulus to investigate the time-dependency and creep effects. In this paper, a new constitutive model of shotcrete is applied to evaluate the time-dependent behaviour of a TBM tunnel lining and investigate the parameters that can influence this behaviour. The Shotcrete model is based on the framework of Elasto-plasticity and designed to model shotcrete linings more realistically. The basic data of Pahang-Selangor Raw Water Transfer Project is used for the analysis study. An attempt is made to investigate the influence of some input parameters of the shotcrete model on the time-dependent behaviour of the shotcrete lining. These parameters include the time-dependent stiffness/strength parameters, creep and shrinkage parameters and steel fibre parameters. The variation in shotcrete strength classes causes a noticeable influence on the development of shotcrete compressive strength with time, particularly during the first days of application. The creep and shrinkage strain cause a considerable reduction in the development of the shotcrete stress with time. The impact of steel fibre content is determined, and the result indicated that the development of plain shotcrete stresses with time is lower than that of the reinforced shotcrete. In addition, a comparison study is performed to analyse the tunnel lining behaviour using both shotcrete model and an elastic analysis. Significant differences in shotcrete lining stresses are achieved when using the elastic analysis while the shotcrete model results in a reasonable result that can be used for the design requirements. 


Author(s):  
Afnan Younis Tanoli ◽  
Bin Yan ◽  
Yong-lin Xiong ◽  
Guan-lin Ye ◽  
Usama Khalid ◽  
...  

2009 ◽  
Vol 49 (4) ◽  
pp. 545-556 ◽  
Author(s):  
Junhwan Lee ◽  
Doohyun Kyung ◽  
Bumjoo Kim ◽  
Monica Prezzi

2012 ◽  
Vol 529 ◽  
pp. 228-235
Author(s):  
Jie Yao ◽  
Yong Hong Zhu

Recently, our research team has been considering to applying shape memory alloys (SMA) constitutive model to analyze the large and small deformation about the SMA materials because of the thermo-dynamics and phase transformation driving force. Accordingly, our team use simulations method to illustrate the characteristics of the model in large strain deformation and small strain deformation when different loading, uniaxial tension, and shear conditions involve in the situations. Furthermore, the simulation result unveils that the difference is nuance concerning the two method based on the uniaxial tension case, while the large deformation and the small deformation results have huge difference based on shear deformation case. This research gives the way to the further research about the constitutive model of SMA, especially in the multitiaxial non-proportional loading aspects.


2021 ◽  
Vol 61 (2) ◽  
pp. 520-532
Author(s):  
Xinyu Liu ◽  
Xianwei Zhang ◽  
Lingwei Kong ◽  
Xinming Li ◽  
Gang Wang

Sign in / Sign up

Export Citation Format

Share Document