dependent behaviour
Recently Published Documents


TOTAL DOCUMENTS

573
(FIVE YEARS 81)

H-INDEX

41
(FIVE YEARS 4)

2021 ◽  
Vol 63 ◽  
pp. 377-419
Author(s):  
Larry K. Forbes ◽  
Stephen J. Walters ◽  
Graeme C. Hocking

A classical problem in free-surface hydrodynamics concerns flow in a channel, when an obstacle is placed on the bottom. Steady-state flows exist and may adopt one of three possible configurations, depending on the fluid speed and the obstacle height; perhaps the best known has an apparently uniform flow upstream of the obstacle, followed by a semiinfinite train of downstream gravity waves. When time-dependent behaviour is taken into account, it is found that conditions upstream of the obstacle are more complicated, however, and can include a train of upstream-advancing solitons. This paper gives a critical overview of these concepts, and also presents a new semianalytical spectral method for the numerical description of unsteady behaviour. doi:10.1017/S1446181121000341


Horticulturae ◽  
2021 ◽  
Vol 7 (12) ◽  
pp. 567
Author(s):  
Lorena Martínez-Zamora ◽  
Noelia Castillejo ◽  
Francisco Artés-Hernández

Background: The main objective of this study was to evaluate the effect of periodical UV-B illumination during red cabbage germination on morphological development and the phenolics and carotenoid accumulation. Methods: During a sprouting period of 10 days at 20 °C in darkness, seedlings received 5, 10, or 15 kJ m−2 UV-B (T5, T10, and T15) applied in four steps (25% on days 3, 5, 7, and 10). UV untreated sprouts were used as control (CTRL). After 10 days of germination, the sprouts were harvested and stored 10 days at 4 °C as a minimally processed product. Phenolic and carotenoid compounds were analysed 1 h after each UV-B application and on days 0, 4, 7, and 10 during cold storage. Results: The longest hypocotyl length was observed in T10-treated sprouts. The total phenolic content (TPC), total flavonoid content (TFC), and total antioxidant capacity (TAC) increased during germination following a sigmoidal kinetic, especially in the UV-B-treated samples, which reported a dose-dependent behaviour. In this way, T10-treated sprouts increased the TPC by 40% after 10 days at 4 °C compared to CTRL, while TAC and TFC increased by 35 and 30%, respectively. Carotenoids were enhanced with higher UV-B doses (T15). Conclusions: We found that UV-B stimulated the biosynthesis of bioactive compounds, and a dose of 10 kJ m−2 UV-B, proportionally applied on days 3, 5, 7, and 10 days, is recommended.


Nanophotonics ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Anton Yu. Bykov ◽  
Diane J. Roth ◽  
Giovanni Sartorello ◽  
Jorge U. Salmón-Gamboa ◽  
Anatoly V. Zayats

Abstract Understanding and optimising the mechanisms of generation and extraction of hot carriers in plasmonic heterostructures is important for applications in new types of photodetectors, photochemistry and photocatalysis, as well as nonlinear optics. Here, we show using transient dynamic measurements that the relaxation of the excited hot-carriers in Au/Pt hetero-nanostructures is accelerated through the transfer pathway from Au, where they are generated, to Pt nanoparticles, which act as a hot-electron sink. The influence of the environment on the dynamics was also demonstrated. The time-resolved photoluminescence measurements confirm the modified hot-electron dynamics, revealing quenching of the photoluminescence signal from Au nanoparticles in the presence of Pt and an increased photoluminescence lifetime. These observations are signatures of the improved extraction efficiency of hot-carriers by the Au/Pt heterostructures. The results give insight into the time-dependent behaviour of excited compound nanoscale systems and provide a way of controlling the relaxation mechanisms involved, with important consequences for engineering nonlinear optical response and hot-carrier-assisted photochemistry.


Author(s):  
Y. Tian ◽  
W. Z. Chen ◽  
H. M. Tian ◽  
J. P. Yang ◽  
Z. Y. Zhang ◽  
...  

Silicon ◽  
2021 ◽  
Author(s):  
V. Ravi Raj ◽  
B. Vijaya Ramnath ◽  
A. Rajendra Prasad ◽  
C. Elanchezhian ◽  
E. Naveen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document