Articulated Human Motion Tracking by Sequential Annealed Particle Swarm Optimization

Author(s):  
Yi Li ◽  
Zhengxing Sun
2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Sanjay Saini ◽  
Dayang Rohaya Bt Awang Rambli ◽  
M. Nordin B. Zakaria ◽  
Suziah Bt Sulaiman

Automatic human motion tracking in video sequences is one of the most frequently tackled tasks in computer vision community. The goal of human motion capture is to estimate the joints angles of human body at any time. However, this is one of the most challenging problem in computer vision and pattern recognition due to the high-dimensional search space, self-occlusion, and high variability in human appearance. Several approaches have been proposed in the literature using different techniques. However, conventional approaches such as stochastic particle filtering have shortcomings in computational cost, slowness of convergence, suffers from the curse of dimensionality and demand a high number of evaluations to achieve accurate results. Particle swarm optimization (PSO) is a population-based globalized search algorithm which has been successfully applied to address human motion tracking problem and produced better results in high-dimensional search space. This paper presents a systematic literature survey on the PSO algorithm and its variants to human motion tracking. An attempt is made to provide a guide for the researchers working in the field of PSO based human motion tracking from video sequences. Additionally, the paper also presents the performance of various model evaluation search strategies within PSO tracking framework for 3D pose tracking.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0127833 ◽  
Author(s):  
Sanjay Saini ◽  
Nordin Zakaria ◽  
Dayang Rohaya Awang Rambli ◽  
Suziah Sulaiman

2019 ◽  
Vol 41 (10) ◽  
pp. 2897-2908 ◽  
Author(s):  
Mohsen Hasanpour Naseriyeh ◽  
Adeleh Arabzadeh Jafari ◽  
Mehrnoosh Zaeifi ◽  
Seyed Mohammad Ali Mohammadi

This paper considers the problem of observer-based adaptive fuzzy output feedback control for a piezo-positioning mechanism with unknown hysteresis. In this paper, fuzzy logic systems (FLSs) are used to estimate the unknown nonlinear functions, and also Nussbaum function is utilized to overcome the unknown direction hysteresis. Based on the Lyapunov method, the control scheme is constructed by using the backstepping and adaptive technique. In order to better control performance in reducing tracking error, the particle swarm optimization (PSO) algorithm is utilized for tuning the controller parameters. Proposed adaptive controller guarantees that all the closed-loop signals are semiglobally uniformly ultimately bounded (SGUUB) and the tracking error can converge to a small neighborhood of the origin. Finally, the simulation results are provided to demonstrate the effectiveness and robustness of the proposed approach.


Sign in / Sign up

Export Citation Format

Share Document