Secure Authentication in Multimodal Biometric Systems Using Cryptographic Hash Functions

Author(s):  
Aravind Ashok ◽  
Prabaharan Poornachandran ◽  
Krishnasree Achuthan
Author(s):  
Shashidhara H. R. ◽  
Siddesh G. K.

Authenticating the identity of an individual has become an important aspect of many organizations. The reasons being to secure authentication process, to perform automated attendance, or to provide bill payments. This need of providing automated authentication has led to concerns in the security and robustness of such biometric systems. Currently, many biometric systems that are organizations are unimodal, which means that use single physical trait to perform authentication. But, these unimodal systems suffer from many drawbacks. These drawbacks can be overcome by designing multimodal systems which use multiple physical traits to perform authentication. They increase reliability and robustness of the systems. In this chapter, analysis and comparison of multimodal biometric systems is proposed for three physical traits like iris, finger, and palm. All these traits are treated independently, and feature of these traits are extracted using two algorithms separately.


2021 ◽  
Author(s):  
Mohamed Abdul-Al ◽  
George Kumi Kyeremeh ◽  
Naser Ojaroudi Parchin ◽  
Raed A Abd-Alhameed ◽  
Rami Qahwaji ◽  
...  

Author(s):  
K Sasidhar ◽  
Vijaya L Kakulapati ◽  
Kolikipogu Ramakrishna ◽  
K KailasaRao

2010 ◽  
Vol 23 (3) ◽  
pp. 357-366
Author(s):  
Miodrag Milic ◽  
Vojin Senk

In this paper we present results of uniform logical cryptanalysis method applied to cryptographic hash function CubeHash. During the last decade, some of the most popular cryptographic hash functions were broken. Therefore, in 2007, National Institute of Standards and Technology (NIST), announced an international competition for a new Hash Standard called SHA-3. Only 14 candidates passed first two selection rounds and CubeHash is one of them. A great effort is made in their analysis and comparison. Uniform logical cryptanalysis presents an interesting method for this purpose. Universal, adjustable to almost any cryptographic hash function, very fast and reliable, it presents a promising method in the world of cryptanalysis.


Author(s):  
Kannan Balasubramanian

Cryptographic Hash Functions are used to achieve a number of Security goals like Message Authentication, Message Integrity, and are also used to implement Digital Signatures (Non-repudiation), and Entity Authentication. This chapter discusses the construction of hash functions and the various attacks on the Hash functions. The Message Authentication Codes are similar to the Hash functions except that they require a key for producing the message digest or hash. Authenticated Encryption is a scheme that combines hashing and Encryption. The Various types of hash functions like one-way hash function, Collision Resistant hash function and Universal hash functions are also discussed in this chapter.


Sign in / Sign up

Export Citation Format

Share Document