Teaching Learning Based Optimization for Neural Networks Learning Enhancement

Author(s):  
Suresh Chandra Satapathy ◽  
Anima Naik ◽  
K. Parvathi
Author(s):  
Sarat Chandra Nayak ◽  
Subhranginee Das ◽  
Mohammad Dilsad Ansari

Background and Objective: Stock closing price prediction is enormously complicated. Artificial Neural Networks (ANN) are excellent approximation algorithms applied to this area. Several nature-inspired evolutionary optimization techniques are proposed and used in the literature to search the optimum parameters of ANN based forecasting models. However, most of them need fine-tuning of several control parameters as well as algorithm specific parameters to achieve optimal performance. Improper tuning of such parameters either leads toward additional computational cost or local optima. Methods: Teaching Learning Based Optimization (TLBO) is a newly proposed algorithm which does not necessitate any parameters specific to it. The intrinsic capability of Functional Link Artificial Neural Network (FLANN) to recognize the multifaceted nonlinear relationship present in the historical stock data made it popular and got wide applications in the stock market prediction. This article presents a hybrid model termed as Teaching Learning Based Optimization of Functional Neural Networks (TLBO-FLN) by combining the advantages of both TLBO and FLANN. Results and Conclusion: The model is evaluated by predicting the short, medium, and long-term closing prices of four emerging stock markets. The performance of the TLBO-FLN model is measured through Mean Absolute Percentage of Error (MAPE), Average Relative Variance (ARV), and coefficient of determination (R2); compared with that of few other state-of-the-art models similarly trained and found superior.


2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ch. Sanjeev Kumar Dash ◽  
Ajit Kumar Behera ◽  
Satchidananda Dehuri ◽  
Sung-Bae Cho

This work presents a novel approach by considering teaching learning based optimization (TLBO) and radial basis function neural networks (RBFNs) for building a classifier for the databases with missing values and irrelevant features. The least square estimator and relief algorithm have been used for imputing the database and evaluating the relevance of features, respectively. The preprocessed dataset is used for developing a classifier based on TLBO trained RBFNs for generating a concise and meaningful description for each class that can be used to classify subsequent instances with no known class label. The method is evaluated extensively through a few bench-mark datasets obtained from UCI repository. The experimental results confirm that our approach can be a promising tool towards constructing a classifier from the databases with missing values and irrelevant attributes.


Sign in / Sign up

Export Citation Format

Share Document