Formation and Structure of Compression Wood

Author(s):  
L. A. Donaldson ◽  
A. P. Singh
Keyword(s):  
2021 ◽  
Author(s):  
Hideto Hiraide ◽  
Yuki Tobimatsu ◽  
Arata Yoshinaga ◽  
Pui Ying Lam ◽  
Masaru Kobayashi ◽  
...  

2000 ◽  
Vol 18 (8) ◽  
pp. 1897-1919 ◽  
Author(s):  
S. Ormarssonand ◽  
H. Petersson ◽  
O. Dahlblom

1999 ◽  
Vol 19 (1-2) ◽  
pp. 13-25 ◽  
Author(s):  
Hossein Lohrasebi ◽  
Warren E. Mabee ◽  
D. N. Roy

Author(s):  
Vladimír Gryc ◽  
Petr Horáček

The paper was aimed at the determination of variability of horizontal resin canal dimension in spruce wood in relation to the position in a spruce stem. Significant changes of dimensions in horizontal resin canal along the stem length and radius were found. On the basis obtained of results 3D models (for CW, OW, SWL and SWP zones) describing changes in resin canal dimensions in spruce in relation to the position in a stem were created. In the models, the resin canal dimension decreases with the height of a stem and on the other hand, with an increasing distance from the stem pith the dimension of resin canal increases. The importance of the paper consists in the enlargement of findings about the structure of spruce with compression wood.


2015 ◽  
Vol 40 (2) ◽  
pp. 315-340 ◽  
Author(s):  
B. A. Molski

The corewood of pine ds very prone to compression wood formation, this changing the whole pattern of the tree ring structure and the siz.es of early and late wood. Compression wood always increases the formation of late wood at the expense of early wood. Tree rings with compression wood are generally wider than those without it, but there occur also tree rings wihout compression wood wider than those in which it is present, formed in the same year and in the same tree.


IAWA Journal ◽  
1988 ◽  
Vol 9 (3) ◽  
pp. 269-274 ◽  
Author(s):  
Frank W. Telewski

The majority of detailed studies on circumnutational growth movements have focused on herbaceous plants or on the primary growth of woody plant seedlings, ignoring completely secondary growth in woody plants. The relatively rapid movement in herbaceous tissues consists of two components: an autonomous growth rhythm and a gravitropic response. Since there is a gravitropic component to circumnutational movement and a gravitropic stimulus can induce compression wood formation, the formation of a compression wood spiral may be expected if there is a circumnutational movement of a woody stern. It is suggested here, that observed spirals of compression wood within annual growth rings in Pinus taeda L. and Abies concolor (Gord. ' Glend.) Lindl. ex Hildebr. represents an annual record of a slower circumnutational growth movement. Data derived from observations of greenhouse- grown 3-year-old Pinus taeda seedlings indicate that there are two distinct circumnutational patterns of different rotation al frequency present in woody plants associated with primary and secondary tissues.


Sign in / Sign up

Export Citation Format

Share Document